Math, asked by RoyalError, 19 days ago

If x = √3 -√2, then the value of x³ – 1/X³ is: (a) 22√3 (b) - 22√2 (c) 22√2 (d) -22√3​

Answers

Answered by tennetiraj86
4

Option (b)

Step-by-step explanation:

Given :-

x = √3-√2

To find :-

Find the value of x³-(1/x³) ?

Solution :-

Given that

x = √3-√2 -------(1)

=> 1/x = 1/(√3-√2)

The Denominator = √3-√2

We know that

The Rationalising factor of √a-√b is √a+√b

The Rationalising factor of √3-√2 = √3+√2

On Rationalising the denominator then

=> 1/x = [1/(√3-√2)]×[(√3+√2)/(√3+√2)]

=> 1/x = (√3+√2)/(√3-√2)(√3+√2)

=> 1/x = (√3+√2)/[(√3)²-(√2)²]

Since , (a+b)(a-b) = a²-b²

Where, a = √3 and b = √2

=> 1/x = (√3+√2)/(3-2)

=> 1/x = (√3+√2)/1

=> 1/x = √3+√2 --------(2)

Now

The value of x³-(1/x³)

We know that

a³-b³ = (a-b)(a²+ab+b²)

=> x³-(1/x³) = [x-(1/x)](x²+(x/x)+(1/x²))

=> x³-(1/x³) = [x-(1/x)][x²+(1/x²)+1]

=> [(√3-√2)-(√3+√2)][(√3-√2)²+(√3+√2)²+1]

=> (√3-√2-√3-√2)(3+2-2√6+3+2+2√6+1)

=> (-√2-√2)(10+1)

=> (-2√2)(11)

=> -22√2

Answer:-

The value of x³-(1/x³) for the given problem is -22√2

Used Identities:-

→(a+b)² = a²+2ab+b²

→(a-b)² = a²-2ab+b²

→(a+b)(a-b) = a²-b²

→a³-b³ = (a-b)(a²+ab+b²)

Answered by asif90hossain
0

Answer:

b)-22√2

Step-by-step explanation:

given,

x=√3-√2

therefore,

1/x=√3+√2

(x-1/x)=√3-√2-√3-√2

= -2√2

x^3-1/x^3 =(x-1/x)^3+3×x×1/x(x-1/x)

= -16√2-6√2

= -22√2

Similar questions