Math, asked by ananya74sarkar, 8 months ago

If x=√3+√2, then the value of x3−1x3 is equal to​

Answers

Answered by pulakmath007
23

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

We are aware of the identity that

  \sf{ {a}^{3}  -  {b}^{3} =  {(a - b)}^{3}   \:   + 3ab(a - b)\: }

GIVEN

 \sf{ x =  \sqrt{3}  +  \sqrt{2} \: }

TO DETERMINE

 \displaystyle \sf{  {x}^{3} -  \frac{1}{ {x}^{3} }  \: }

CALCULATION

Here

 \displaystyle \sf{   \frac{1}{ {x} }   =  \frac{1}{  \sqrt{3}   +  \sqrt{2} } \: }

 \implies \:  \displaystyle \sf{   \frac{1}{ {x} }   =  \frac{ \sqrt{3} -  \sqrt{2}  }{  (\sqrt{3}   +  \sqrt{2} )( \sqrt{3}  -  \sqrt{2}) } \: }

 \implies \:  \displaystyle \sf{   \frac{1}{ {x} }   =  \frac{ \sqrt{3} -  \sqrt{2}  }{   {( \sqrt{3}) }^{2}  -  {( \sqrt{2} \: ) }^{2} } \: }

 \implies \:  \displaystyle \sf{   \frac{1}{ {x} }   =  \frac{ \sqrt{3} -  \sqrt{2}  }{3 - 2 } }

 \implies \:  \displaystyle \sf{   \frac{1}{ {x} }   =   \sqrt{3} -  \sqrt{2}  }

 \therefore \:  \:  \displaystyle \sf{   x - \frac{1}{ {x} }   =   \sqrt{3}  +  \sqrt{2} -  \sqrt{3}    +  \sqrt{2} }

 \therefore \:  \:  \displaystyle \sf{   x - \frac{1}{ {x} }   =  2 \sqrt{2} }

Hence

 \displaystyle \sf{  {x}^{3} -  \frac{1}{ {x}^{3} }  \: }

 =  \displaystyle \sf{  { \bigg( x -  \frac{1}{x} \:  \bigg)}^{3}  + 3 .x. \frac{1}{x}  (x -  \frac{1}{x} ) \: }

 =  \displaystyle \sf{  { \bigg( x -  \frac{1}{x} \:  \bigg)}^{3}  +  3 (x -  \frac{1}{x} ) \: }

 =  \displaystyle \sf{  { ( 2\sqrt{2} \: ) }^{3}  +  3  \times 2 \sqrt{2}  \: }

 =  \displaystyle \sf{ 16 \sqrt{2}  + 6 \sqrt{2}  }

 =  \displaystyle \sf{ 22 \sqrt{2} }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

If a : b=c:d=e: f= 2:1, then (a + 2c + 3e) : (5b + 10d + 15f) =?

https://brainly.in/question/23293448

Similar questions