Math, asked by shubhamtiger7898, 23 days ago

If x = √3-√2 , then value of (x + 1 / x) will be​

Answers

Answered by Sagar9040
18

Let √x - 1/√x = a

Squaring both the sides,

x + 1/x - 2 = a^2

Putting the value,

3–2√2 + 1/(3–2√2) - 2 = a^2

a^2 = 1 - 2√2 + 1/(3–2√2)

= [(3–2√2) (1–2√2) + 1] / 3–2√2

= {3 - 8√2 + 9} / 3–2√2

= [12 - 8\sqrt{2 ] / 3–2√2

Rationalising both the sides

= {(12 - 8√2)(3+2√2)} ÷ (9–8)

= 36 + 24√2 - 24√2 + 16(2)

= 36 - 32

=> 4

a^2 = 4

a = √4

a = 2, -2

So,

√x - 1/√x = a = 2, -2.

Answered by IntrovertLeo
9

Given:

The value of x -

  • \bf x = \sqrt{3} - \sqrt{2}

What To Find:

We have to find the value of -

  • \bf x + \dfrac{1}{x}

Solution:

  • Finding the value of -

\sf \to \: \dfrac{1}{x}

We know that -

\sf \to \: x = \sqrt{3} - \sqrt{2}

Substitute the value in 1/x,

\sf \to \: \dfrac{1}{x} = \dfrac{1}{\sqrt{3}-\sqrt{2}}

Let's rationalise the denominator!

Here, the rationalising factor of the denominator is -

\sf \to \: \sqrt{3} + \sqrt{2}

Multiply it with the expression,

\sf \to \: \dfrac{1}{\sqrt{3}-\sqrt{2}} \times \dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}

Take them as common,

\sf \to \: \dfrac{\sqrt{3}+\sqrt{2}}{(\sqrt{3}-\sqrt{2}) \times (\sqrt{3}+\sqrt{2})}

Using the identity (a - b) (a + b) = a² - b²,

\sf \to \: \dfrac{\sqrt{3}+\sqrt{2}}{(\sqrt{3})^2-(\sqrt{2})^2}

Find the squares,

\sf \to \: \dfrac{\sqrt{3}+\sqrt{2}}{3-2}

Subtract 2 from 3,

\sf \to \: \dfrac{\sqrt{3}+\sqrt{2}}{1}

Also written as,

\sf \to \: \sqrt{3}+\sqrt{2}

∴ Thus, we got the value of 1/x.

  • Finding the value of -

\sf \to \: x + \dfrac{1}{x}

Substitute the values,

\sf \to \: (\sqrt{3}-\sqrt{2}) + (\sqrt{3}+\sqrt{2})

Remove the brackets,

\sf \to \: \sqrt{3}-\sqrt{2} + \sqrt{3}+\sqrt{2}

Rearrange the terms,

\sf \to \: \sqrt{3}+\sqrt{3}+\sqrt{2}-\sqrt{2}

Add √3 and √3,

\sf \to \: 2\sqrt{3}+\sqrt{2}-\sqrt{2}

Subtract √2 from √2,

\sf \to \: 2\sqrt{3}+0

Can be written as,

\sf \to \: 2\sqrt{3}

Final Answer:

\rm \therefore Thus, the \: value \: of \: \bigg(x + \dfrac{1}{x} \bigg) \: is \: 2\sqrt{3}.

Similar questions