if x = √3+√2, then x²+1/x² = ??
Answers
The value of x²+(1/x²) is 10
Given :-
x = √3+√2
To find :-
The value of x²+(1/x²)
Solution :-
Given that
x = √3+√2 ------------(1)
=> 1/x = 1/(√3+√2)
The denominator = √3+√2
We know that
The Rationalising factor of √a+√b = √a-√b
The Rationalising factor of √3+√2 = √3-√2
On Rationalising the denominator then
1/x = [1/+(√3+√2)]×[(√3-√2)/(√3-√2)]
=> 1/x = [1(√3-√2)]/[(√3+√2)(√3-√2)]
=> 1/x = (√3-√2)/([(√3)²-(√2)²]
Since, (a+b)(a-b) = a²-b²
Where, a = √3 and b = √2
=> 1/x = (√3-√2)/(3-2)
=> 1/x = (√3-√2)/1
=> 1/x = √3-√2 -------(2)
We know that
(a+b)² = a²+2ab+b²
Now,
[x+(1/x)]² = x²+2(x)(1/x)+(1/x)²
=> [x+(1/x)]² = x²+2(x/x)+(1/x²)
=> [x+(1/x)]² = x²+2(1)+(1/x²)
=> [x+(1/x)]² = x²+(1/x²)+2
=> x²+(1/x²) = [x+(1/x)]²-2
=> x²+(1/x²) = (√3+√2+√3-√2)²-2
=> x²+(1/x²) = (√3+√3)²-2
=> x²+(1/x²) = (2√3)²-2
=> x²+(1/x²) = 12-2
Therefore, x²+(1/x²) = 10
Answer :-
The value of x²+(1/x²) is 10
Used formulae:-
• (a+b)² = a²+2ab+b²
• (a+b)(a-b) = a²-b²
• The Rationalising factor of √a+√b is √a-√b