Math, asked by vidhipatel14feb, 3 months ago


If x = 3 – 2 underoot 2, find (i) x² +1/x^2

Answers

Answered by Anonymous612
0

Answer:

x= 3 - 2v2 ---(1)

1/x = 1/( 3 - 2v2 )

= ( 3 + 2v2 )/[(3 - 2v2 )(3+2/2 )]

= (3+ 2v2 )/[3? - (2v2 )2]

= (3+2v2)/(9 - 8)

= 3 + 2v2 ----( 2)

x + 1/x = 3 - 2v2 + 3 + 2v2

--(3)

X - 1/x = 3 - 2v2 - (3 + 2v2)

= 3 - 2v2 - 3 - 2V2

--- (4) = - 4V2 ---

Now,

x? - 1/x? = ( x + 1/x ) (x - 1/x )

= 6 x (- 4v2 )

[ From (3) and ( 4 )]

= - 24v2

Answered by vaishubh1707
2

Answer:

34

Step-by-step explanation:

( i)

x =3 -2 \sqrt{2}  \\  \frac{1}{x}  =  \frac{1}{3 - 2 \sqrt{2} }  \\ \frac{1}{x}  =  \frac{1( \:3  + 2 \sqrt{2})}{3 - 2 \sqrt{2}( \:3  + 2 \sqrt{2}) }  \\  \frac{1}{x}  = 3 + 2 \sqrt{2}

 {x}^{2}  +  \frac{1}{{x}^{2} }  =  {(x +  \frac{1}{x} )}^{2}  - 2 \\  = { \: (3 + 2 \sqrt{2}  + 3 - 2 \sqrt{2}  ) }^{2}  - 2 \\  =  {6}^{2}  - 2  \\  = 36 -  2 \\  = 34

Similar questions