Math, asked by sukhitha, 6 months ago

if x=3-2root2,find the value of x^3+1/x^3

Answers

Answered by Mɪʀᴀᴄʟᴇʀʙ
36

Given :-

 \sf{{x = 3 - 2\sqrt{2}}}

To find :-

 \sf{{{x}^{3}}}+\sf\dfrac{1}{{x}^{3}}

Formula :-

( \sf{{x}}+\sf\dfrac{1}{x} \sf{{={x}^{3}}}+\sf\dfrac{1}{{x}^{3}} \sf{{+3}}( \sf{{x+}}\sf\dfrac{1}{x})

 \implies\sf{{{x}^{3}}}+\sf\dfrac{1}{{x}^{3}}=( \sf{{x}}+\sf\dfrac{1}{x} \sf{{-3}}( \sf{{x+}}\sf\dfrac{1}{x})

Solution :-

As we know,

 \sf{{x = 3 - 2\sqrt{2}}}

So,

\sf\dfrac{1}{x}=\sf\dfrac{1}{3-2√2}

Rationalizing Factor = 3 + 22

=\sf\dfrac{1}{(3-2\sqrt{2})}×\sf\dfrac{(3+2\sqrt{2})}{(3+2\sqrt{2})}

=\sf\dfrac{(3+2\sqrt{2})}{{(3)}^{2}-{(2\sqrt{2})}^{2}}

=\sf\dfrac{(3+2\sqrt{2})}{9-8}

 =\sf{{3+2\sqrt{2}}}

Now,

 \sf{{x+}}\sf\dfrac{1}{x} \sf{{=(3-2\sqrt{2})+(3+2\sqrt{2})}}

 \sf{{=3-2\sqrt{2}+3+2\sqrt{2}}}

 \sf{{=3+3-2\sqrt{2}+2\sqrt{2}}}

 \sf{{=6}}

Now let us apply the Formula :

 \sf{{{x}^{3}}}+\sf\dfrac{1}{{x}^{3}}=( \sf{{x}}+\sf\dfrac{1}{x} \sf{{-3}}( \sf{{x+}}\sf\dfrac{1}{x})

 =\sf{{{(6)}^{3}}} \sf{{-3(6)}}

 \sf{{=216-18}}

 \sf{{=198}}

★ Required Answer:

 \sf{{Value}} \sf{{of}}\sf{{{x}^{3}}}+\sf\dfrac{1}{{x}^{3}} \sf{{=198}}

Similar questions