Math, asked by rimjim9145, 1 year ago

If x=3+2root2 then find the value of x cube +1 by x cube

Answers

Answered by pulkitraina260ovri2y
167

x = 3 + 2 \sqrt{2}  \\  \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} }  \\  \:  \:  \:  \:  \:   =  \frac{3 - 2 \sqrt{2} }{1 }\\  \:  \:  \:  \:  \:  = 3 - 2 \sqrt{2} \\ x +  \frac{1}{x}  = 6 \\ cubing \: both \: sides \\ (x  +  \frac{1}{x})^{3} = 216 \\  {x}^{3}  + (  { \frac{1}{x}) }^{3}  + 3.x. \frac{1}{x} (x +  \frac{1}{x} ) = 216 \\  {x}^{3} + ( { \frac{1}{x}) }^{3}  + 3(6) = 216 \\  {x}^{3}  + ( { \frac{1}{x} )}^{3} = 216 - 18 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 198
please mark brainliest
Answered by BrainlyQueen01
111
Hi there!

_______________________

Given :

x = 3 + 2 \sqrt{2}

To find ;

x {}^{3}  +  \frac{1}{x {}^{3} }

Solution :

x = 3 +  2\sqrt{2}  \\  \\  \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} }  \times  \frac{3  -  2 \sqrt{2} }{3 - 2 \sqrt{2} }  \\  \\  \frac{1}{x}  =  \frac{3 - 2 \sqrt{2} }{(3) {}^{2} - (2 \sqrt{2}  ) {}^{2} }  \\  \\  \frac{1}{x}  =  \frac{3 - 2 \sqrt{2} }{9 - 8}  \\  \\  \frac{1}{x}  = 3 - 2 \sqrt{2}

And,

x +  \frac{1}{x}  = 3 + 2 \sqrt{2}   + 3 - 2 \sqrt{2}  \\  \\ x +  \frac{1}{x}  = 3 + 3 \\  \\ x +  \frac{1}{x}  = 6

Now,

(x +  \frac{1}{x} ) {}^{3}  = (6) {}^{3}  \\  \\ x {}^{3}  +  \frac{1}{x {}^{3} }  + 3(x +  \frac{1}{x} ) = 216 \\  \\  x {}^{3}  +  \frac{1}{x {}^{3} }  + 3 \times 6 = 216 \\  \\  x {}^{3}  +  \frac{1}{x {}^{3} }  + 18 = 216 \\  \\  x {}^{3}  +  \frac{1}{x {}^{3} }  = 216 - 18 \\  \\  \boxed{ \red{ \bold{ x {}^{3}  +  \frac{1}{x {}^{3} }  = 198}}}


_______________________

Thanks for the question!

☺️
Similar questions