Math, asked by pranjalkakkar, 1 year ago

if x=3+2root2 then find the value of x4+1/x4

Answers

Answered by srilukolluru
54
I hope it will help you
Attachments:
Answered by harendrachoubay
61

x^{4}+\dfrac{1}{x^{4}}=1154

Step-by-step explanation:

We have,

x=3+2\sqrt{2}

To find, the value of x^{4} +\dfrac{1}{x^{4}} =?

\dfrac{1}{x} =\dfrac{1}{3+2\sqrt{2}}

Rationalising, we get

\dfrac{1}{x} =\dfrac{1}{3+2\sqrt{2}}\times \dfrac{3-2\sqrt{2}}{3-2\sqrt{2}}

=\dfrac{3-2\sqrt{2}}{3^2-(2\sqrt{2})^2}=\dfrac{3-2\sqrt{2}}{9-8}

\dfrac{1}{x} =3-2\sqrt{2}

(x+\frac{1}{x})^{2}=x^{2}+(\dfrac{1}{x})^{2}+2.x.\dfrac{1}{x}

(3+2\sqrt{2}+3-2\sqrt{2})^{2}=x^{2}+\dfrac{1}{x^{2}} +2

x^{2}+\dfrac{1}{x^{2}} =36-2=34     .....(1)

Again squaring (1), we get

(x^{2}+\dfrac{1}{x^{2}} )^{2} =34^{2}

x^{4}+\dfrac{1}{x^{4}} +2=1156

x^{4}+\dfrac{1}{x^{4}} =1156-2=1154  

Hence, x^{4}+\dfrac{1}{x^{4}}=1154

Similar questions