Math, asked by elena7120, 4 months ago

If x=3+2under root 2 then find the value of (under root x - 1/under root x)

Need ASAP​

Answers

Answered by SweetCharm
6

 \huge \sf {\orange {\underline {\pink{\underline{Answer :-}}}}}

\displaystyle\sf x = 3+2\sqrt{2}

\displaystyle\sf \sqrt{x}-\dfrac{1}{\sqrt{x}}

━━━━━━━━

\displaystyle\sf :\implies \dfrac{1}{x} = \dfrac{1}{3+2\sqrt{2}}\\

\displaystyle\sf :\implies \dfrac{1}{3+2\sqrt{2}}\times \dfrac{3-2\sqrt{2}}{3-2\sqrt{2}}

\displaystyle\sf :\implies \dfrac{3-2\sqrt{2}}{3^2-(2\sqrt{2}^2)}

\displaystyle\sf :\implies \dfrac{3-2\sqrt{2}}{9-8}

\displaystyle\sf :\implies \dfrac{1}{x} = 3-2\sqrt{2}

So now we that we have rationalised the denominator let's find the value of x+1/x. After that on rearranging the terms we get that the final answer required

\displaystyle\sf :\implies x+\dfrac{1}{x} = (3+2\sqrt{2}) + (3-2\sqrt{2})

\displaystyle\sf :\implies x+\dfrac{1}{x} = 3+2\sqrt{2} + 3 - 2\sqrt{2}

\displaystyle\sf :\implies x+\dfrac{1}{x} = 6

So here we know that we may split the number 6 into 4+2 and 4+2 = 6

\displaystyle\sf :\implies x+\dfrac{1}{x} = 2+4

\displaystyle\sf :\implies x+\dfrac{1}{x}-2 = 4

\displaystyle\sf :\implies \bigg\lgroup \sqrt{x}-\dfrac{1}{\sqrt{x}}\bigg\rgroup^2 = 4

\displaystyle\sf :\implies \sqrt{x}-\dfrac{1}{\sqrt{x}} = \sqrt{4}

\displaystyle\sf :\implies \sqrt{x}-\dfrac{1}{\sqrt{x}} = \pm 2

\displaystyle\therefore\:\underline{\textsf{The value of $ \sqrt{ \sf x}-\dfrac{\sf 1}{\sqrt{\sf x}}$ is \textbf{$\pm$2 }}}

{\huge{\underline{\small{\mathbb{\pink{HOPE\:HELPS\:UH :)}}}}}}

\red{\tt{sωєєтcнαям♡~}}

Answered by Anonymous
4

Step-by-step explanation:

this is the correct answer.....

Attachments:
Similar questions