Math, asked by littlechicken, 6 months ago

if x^3+2x^2+ax+b has factors x+1 and x-1 then find a and b

Answers

Answered by snehitha2
4

Question :

if x³ + 2x² + ax + b has factors (x+1) and (x-1) then find a and b

Answer :

  • a = -1
  • b = -2

Given :

  • polynomial, x³ + 2x² + ax + b
  • factors : (x+1) and (x-1)

To find :

values of a and b

Solution :

Given polynomial,

  x³ + 2x² + ax + b

⟹ (x+1) is a factor

    x + 1 = 0

      x = -1

Since (x+1) is a factor,

when we substitute the value of x = -1, we get 0.

    ⇒ x³ + 2x² + ax + b

    ⇒ (-1)³ + 2(-1)² + a(-1) + b = 0

    ⇒ -1 + 2(1) - a + b = 0

    ⇒ -1 + 2 - a + b = 0

    ⇒ b - a + 1 = 0

    ⇒ a - b = 1 ---- (1)

⟹ (x-1) is a factor

    x - 1 = 0

      x = 1

Since (x-1) is a factor,

  when we substitute the value of x = 1,we get 0

        ⇒ x³ + 2x² + ax + b

       ⇒ (1)³ + 2(1)² + a(1) + b = 0

       ⇒ 1 + 2(1) + a + b = 0

       ⇒ 1 + 2 + a + b = 0

       ⇒ a + b + 3 = 0

       ⇒ a + b = -3 ---- (2)

------------------------------

ADDING BOTH EQUATIONS,

  a - b = 1

   a + b = -3

--------------------

  2a = -2

  a = -2/2

  a = -1

Substitute the value of a in any equation,

    a - b = 1

    -1 - b = 1

    b = -1 -1

    b = -2

║ a = -1 and b = -2

Answered by anshubharia9
2

Answer:

a= -1 and b= -2

Step-by-step explanation:

show the photo that is given up

Attachments:
Similar questions