Math, asked by pritishaghosh2006, 1 month ago

If x = √+3 +√−3 √+3 −√−3 , Prove that 3ax2 – 2bx + 3a = 0​

Answers

Answered by rudra395
1

Answer:

Step-by-step explanation:Given:- x=  

a+3b

−  

a−3b

 

a+3b

+  

a−3b

 

 

To prove:- 3bx  

2

−2ax+3b=0

Proof:-

x=  

a+3b

−  

a−3b

 

a+3b

+  

a−3b

 

 

Multiply and divide the above equation by conjugate of its denominator, we have

x=  

a+3b

−  

a−3b

 

a+3b

+  

a−3b

 

×  

a+3b

+  

a−3b

 

a+3b

+  

a−3b

 

 

x=  

(  

a+3b

)  

2

−(  

a−3b

)  

2

 

(  

a+3b

+  

a−3b

)  

2

 

 

x=  

(a+3b)−(a−3b)

(a+3b)+(a−3b)+2  

(a+3b)(a−3b)

 

 

x=  

a+3b−a+3b

a+3b+a−3b+2  

(a+3b)(a−3b)

 

 

⇒x=  

6b

2a+2  

a  

2

−(3b)  

2

 

 

 

⇒6bx=2a+2  

a  

2

−9b  

2

 

 

⇒3bx−a=  

a  

2

−9b  

2

 

 

Squring both sides, we have

(3bx−a)  

2

=(  

a  

2

−9b  

2

 

)  

2

 

9b  

2

x  

2

+a  

2

−6abx=a  

2

−9b  

2

 

9b  

2

x  

2

−6abx+9b  

2

=0

⇒3b(3bx  

2

−2ax+3b)=0

⇒3bx  

2

−2ax+3b=0

Hence proved.

Similar questions