Math, asked by divyanshasingh804, 22 hours ago

If x = √3 + √4 + √5 then x^4– 8x^3+ 8x^2+ 32x = ?

Answers

Answered by kp59362812
0

Answer:

If x = 1 + √2 + √3, then the value of (2x4 – 8x3 – 5x2 + 26x – 28) is. a) 6 √6. b) 0. c) 3 √6. d) 2√6. 3). If x [(3) – 2 / x] = 3 / x, x ≠ 0, then the ...

Attachments:
Answered by brokendreams
0

Step-by-step explanation:

Given: We are given equation x^{4} - 8x^{3} + 8x^{2} + 32x and the value of x=\sqrt{3} + \sqrt{4} + \sqrt{5}

To find The solution to the equation,

For calculation of equation,

We will substitute x with the given value

Let f(x) = 8x^{3} _18x^{2} - 8x + 2

f(2+\sqrt{3}) = (2+\sqrt{3})^{4} - 8(2+\sqrt{3} )^{3} + 18 (2+\sqrt{3})^{2} (2+\sqrt{3})^{2} + 2

(2+\sqrt{3})^{2}  ((2+\sqrt{3})^{2} + 18) - 8(2+\sqrt{3})  ((2+ \sqrt{3})^{2}  +1) + 2

(7 + 4\sqrt{3}) (4\sqrt{3}+25) - 8 (2+\sqrt{3}) (8+ 4\sqrt{3}) + 2

175+48-128-96+2

1

The answer is 1.

Similar questions