Math, asked by kumariabha2341, 2 months ago

if x= 3+√5/2, show that x+1/x=3. also find x cube +1/x cube

give the answer fast ​

Answers

Answered by Tan201
16

Step-by-step explanation:

Given:

x=\frac{3+\sqrt{5} }{2}

To prove:

x+\frac{1}{x}=3

Proof:

\frac{1}{x}=\frac{1}{\frac{3+\sqrt{5} }{2} }

1\div\frac{3+\sqrt{5}}{2 }

1\times\frac{2}{3+\sqrt{5} }

\frac{1\times2}{3+\sqrt{5} }

\frac{2}{3+\sqrt{5} }

On rationalising the denominator,

\frac{2}{3+\sqrt{5} }\times\frac{3-\sqrt{5}}{3-\sqrt{5} }

\frac{2(3-\sqrt{5}) }{(3+\sqrt{5})(3-\sqrt{5})}

\frac{2(3-\sqrt{5}) }{(3)^2-(\sqrt{5})^2}

\frac{2(3-\sqrt{5}) }{9-5}

\frac{2(3-\sqrt{5}) }{4}

\frac{3-\sqrt{5} }{2}

\frac{1}{x} =\frac{3-\sqrt{5} }{2}

x+\frac{1}{x}=\frac{3+\sqrt{5} }{2}+(\frac{3-\sqrt{5} }{2} )

\frac{3+\sqrt{5} }{2}+\frac{3-\sqrt{5} }{2}

\frac{3+\sqrt{5}+3-\sqrt{5}  }{2}

\frac{3+3+\sqrt{5}-\sqrt{5}  }{2}

\frac{6+0}{2}

\frac{6}{2}

3

x+\frac{1}{x}=3.

Hence proved.

To find:

x^3+(\frac{1}{x})^3

Solution:

x^3+(\frac{1}{x})^3

=(\frac{3+\sqrt{5} }{2})^3 +(\frac{3-\sqrt{5} }{2})^3

\frac{(3+\sqrt{5})^3 }{(2)^3}+\frac{(3-\sqrt{5})^3 }{(2)^3}

\frac{(3)^3+(\sqrt{5})^3 +3(3)^2(\sqrt{5})+3(3)(\sqrt{5})^2  }{8}+\frac{(3)^3-(\sqrt{5})^3 -3(3)^2(\sqrt{5})+3(3)(\sqrt{5})^2  }{8}

((a+b)^3=a^3+b^3+3a^2b+3ab^2, (a-b)^3=a^3-b^3-3a^2b+3ab^2)

\frac{27+5\sqrt{5} +3(9)(\sqrt{5})+3(3)(5)  }{8}+\frac{27-5\sqrt{5} -3(9)(\sqrt{5})+3(3)(5)  }{8}

\frac{27+5\sqrt{5} +27\sqrt{5}+45  }{8}+\frac{27-5\sqrt{5} -27\sqrt{5}+45  }{8}

\frac{27+45+5\sqrt{5} +27\sqrt{5}  }{8}+\frac{27+45-5\sqrt{5} -27\sqrt{5}  }{8}

\frac{72+32\sqrt{5}  }{8}+\frac{72-32\sqrt{5} }{8}

\frac{72+32\sqrt{5} +72-32\sqrt{5} }{8}

\frac{72+72+32\sqrt{5} -32\sqrt{5} }{8}

\frac{144+0 }{8}

\frac{144}{8}

18

x^3+(\frac{1}{x})^3=18.

Answered by Piyushbharadwaj
2

Step-by-step explanation:

this us your answer forif x= 3+√5/2, show that x+1/x=3. also find x cube +1/x cube

give the answer fast

Attachments:
Similar questions