Math, asked by rachanaguptardx, 3 months ago

If x^3+6x^2+4x+k is exactly divisible by x+2, then k =
(a) - 6
(b) - 7
(c) - 8
(d) -10​

Answers

Answered by Levilebaysgf
0

Answer:

C

Step-by-step explanation:

Correct option is

C

-8

Divide x

3

+6x

2

+4x+k by x+2

x+2

)x

3

+6x

2

+4x+k(

x

2

+4x−6

−(x

3

+2x

2

)

4x

2

+4x+k

−(4x

2

+8x)

−4x+k

−(−4x−8)

k+8

As, x+2 is a factor of the given polynomial, so remainder must be 0.

So, k+8=0 or k=−8

PLEASE MARK ME AS BRAINLIEST

#CARRYONLEARNING

HOPE IT HEPS.

Hence, C is correct.

Answered by Anonymous
46

\large \mathfrak \green {➯ \: Question \: ࿐}

If \sf x^3+6x^2+4x+k is divisible exactly by \sf  x+2, then k is equal to :-

(A) -6

(B) -7

(C) -8

(D) -10

 \\

\large \mathfrak \green {➯ \: Solution \: ࿐ }

It is given that \sf x+2 divides \sf x^3+6x^2+4x+k. So :-

\pink {:\implies} \:  \: \sf x+2=0

\pink {:\implies} \:  \: \sf x= - 2

Now, substituting \sf x=2 in the equation and equating it to 0 :-

\pink {:\implies} \:  \: \sf (-2)^3+6(-2)^2 + 4( - 2) + k = 0

\pink {:\implies}\:\:\:\sf -8+6(4) - 8 + k =  0

\pink {:\implies}\:\:\:\sf -8+24 - 8 + k = 0

\pink {:\implies} \:  \:  \: \sf -16+24+k=0

\pink {:\implies} \:  \:  \: \sf 8+k=0

\pink {:\implies} \:  \:  \: \sf k=-8

\pink {\therefore\sf \: k=-8(OptionC) \: when \: x+2 \: divides \: x^3+6x^2+4x+k=0.}

 \\

\large \mathfrak \green {➯ \: Verification \: ࿐}

Substituting \sf k=-8 and \sf x=-2 in the equation and equating it to 0 :-

\pink {:\implies}\:\:\sf(-2)^3+6(-2)^2+4(-2)+(-8)=0

\pink {:\implies} \:  \:  \: \sf -8 + 6(4) - 8  - 8 = 0

\pink {:\implies} \:  \:  \: \sf -24+24=0

\pink {:\implies} \:  \:  \: \sf 0=0

\pink {\therefore \sf  \:LHS=RHS \:  }

 \\

_________________________

Note :- Swipe your screen from left to right in order to view the answer completely!

Similar questions