If x = 3 + √8, find the value of x^2+1/x^2
Answers
Answered by
2
Step-by-step explanation:
x = 3+ √8
x = (3+√8)(3-√8) / (3-√8)
x = (9 -8) / (3-√8)
x = 1/ (3 -√8)
Or we can write 1/x = (3-√8)
Put the value and find out
x² +(1/x²) = x² + (1/x)²
So x² + 1/ x² = (3 +√8)² + (3 -√8)²
= 9+6√8+8 + 9–6√8+8
= 34. Ans.
Answered by
0
Answer
= 34
Step-by-step explanation:
x = 3 + root8
1/x = 1/3+ root8
1/x = 1/3+root8 x 3-root8/3-root8
1/x= 3-root8/3square-square of root8
1/x=3-root8/9-8
therefore 1/x = 3-root 8
xsquare + 1/xsquare =
3+root8 the whole square + 3-root8 the whole square
[9+6root8+8] + [9-6root8+8]
17 + 6root8 + 17 - 6root8
+6root8 and -6root8 will get cut
= 17 + 17
= 34
Similar questions