Math, asked by chhanhima6150, 10 months ago

If x = 3+√8 ,find the value of x^3+1/x^3

Answers

Answered by TheFairyTale
7

Answer:

 \implies \: \boxed{ \red{ \sf {x}^{3}  +  \dfrac{1}{ {x}^{3} }  = 198}}

GivEn :-

  •  \sf \: x = 3 +  \sqrt{8}

To Find :-

  •  \sf {x}^{3}  +  \dfrac{1}{ {x}^{3} }

Step-by-step explanation:

 \sf \: x = 3 +  \sqrt{8}

 \implies \sf \:  \dfrac{1}{x}  =  \dfrac{1}{3 +  \sqrt{8} }

 \implies \sf \:  \dfrac{1}{x}  =  \dfrac{(3  -   \sqrt{8}) }{(3 +  \sqrt{8}) (3  -   \sqrt{8})}

 \implies \sf \:  \dfrac{1}{x}  =  \dfrac{(3  -   \sqrt{8}) }{9 - 8}

\implies \sf \:  \dfrac{1}{x}  =  {(3  -   \sqrt{8}) }

 \sf \: Now,(x +  \dfrac{1}{x} ) = ( 3 +  \sqrt{8}  + 3 -  \sqrt{8} )

 \implies \: \sf  \: (x +  \dfrac{1}{x} ) = 6

 \sf \: Now, \boxed{ \sf {x}^{3}  +  \dfrac{1}{ {x}^{3} } }

 \implies \sf \: (x +  \dfrac{1}{ {x} } )^{3}  - 3 \times x  \times \dfrac{1}{x} (x +  \dfrac{1}{ {x} })

( Putting the value..)

 \implies \sf \:  {6}^{3}  - 3 \times 6 = 216 - 18

 \implies \: \boxed{ \red{ \sf {x}^{3}  +  \dfrac{1}{ {x}^{3} }  = 198}}

Similar questions