Math, asked by veerbansal2005, 11 months ago

If x = 3 + √8, find the value of (x² + 1/x²)​

Answers

Answered by srilakshmi23
6

Answer:

34

Step-by-step explanation:

given x= 3+√8

squaring on both sides

(x)^2=(3+√8)^2

x^2=(3)^2+2(3)(√8)+(√8)^2

x^2=9+6√8+8

x^2=17+6√8

1/x^2=17-6√8

x^2+1/x^2=17+6√8+17-6√8

=17+17

=34

{x^2 means x power 2}

Answered by Anonymous
21

x = 3 + √8

______ [GIVEN]

• We have to find the value of x² + \dfrac{1}{ {x}^{2} }

______________________________

• x = 3 + √8

\dfrac{1}{x} = \dfrac{1}{3 +  \sqrt{ 8}}

=> \dfrac{1}{3 +  \sqrt{ 8}} \:  \times  \:  \dfrac{3 \:  -  \:  \sqrt{8} }{3 \:  -  \:  \sqrt{8} }

=> \dfrac{3 \:  -  \:  \sqrt{8} }{9 \:  -  \:8 }

=> 3 - √8

______________________________

(x + \dfrac{1}{x}) = 3 + √8 + 3 - √8

=> 6

• Do squaring on both sides

=> ( {x \:  +  \:  \dfrac{1}{x}) }^{2} = (6)²

=> x² + \dfrac{1}{ {x}^{2} } + 2 (\dfrac{x}{x}) = 36

=> x² + \dfrac{1}{ {x}^{2} } + 2 = 36

=> x² + \dfrac{1}{ {x}^{2} } = 36 - 2

____________________________

x² + \dfrac{1}{ {x}^{2} } = 34

____________ [ANSWER]

Similar questions