Math, asked by omp96, 1 year ago

if x=3+√8 find the value of x2+1/x3

Answers

Answered by Muskan1101
8
Here's your answer!!

_________________________________

It's given that,

x = 3 + \sqrt{8}

We have to find the value of ,

 = > ( {x}^{2} + \frac{1}{ {x}^{2} } )

Let's find it :-

x = (3 + \sqrt{8} )

So,

 \frac{1}{x} = \frac{1}{3 + \sqrt{8} }

Now,we will rationalise the denominator:-

 = > \frac{1}{x} = \frac{1}{3 + \sqrt{8} } \times \frac{3 - \sqrt{8} }{3 - \sqrt{8} }

 = > \frac{1}{x} = \frac{3 - \sqrt{8} }{ {(3)}^{2} - {( \sqrt{8} )}^{2} }

 = > \frac{1}{x} = \frac{3 - \sqrt{8} }{1}

 = > \frac{1}{x} = 3 - \sqrt{8}

Now,

We can write,

(x + \frac{1}{x} ) = ( 3 + \sqrt{8}) - (3 - \sqrt{8} )

(x + \frac{1}{x}) = 3 + \sqrt{8} + 3 - \sqrt{8}

 = > \sqrt{8} - \sqrt{8} \: \: \: get \: cancelled
(x + \frac{1}{x}) = 6

By squaring both side ,we get :-

 = > {( {x} + \frac{1}{x} )}^{2} = {(6)}^{2}

 = > {(x + \frac{1}{x} )}^{2} = 36

-----------------------------
We know that,
 {(a + b)}^{2} = {a}^{2} + {b}^{2} + 2ab
We'll applied this identity to solve this question.
------------------------------

 = > ( {x}^{2} + { \frac{1}{x} }^{2}) + 2 \times x \times \frac{1}{x} = 36

=>x and x get cancelled.

 = > ( {x}^{2} + { \frac{1}{x} )}^{2} + 2 = 36

 = > ( {x}^{2} + { \frac{1}{x} )}^{2} = 36 - 2

 = > ( {x}^{2} + { \frac{1}{x} }^{2} ) = 34

_______________________________

Hope it helps you!! :)

BrainlyWarrior: Great Answer ✌
Similar questions