Math, asked by cnrkrishna969, 10 months ago

If x = 3+√8 ,find the value of x3+1/x3

Answers

Answered by rounaksingh6b18250
2

Step-by-step explanation:

Hey there !!

Given :-

\bf x = 3 - \sqrt{8} .x=3−

8

.

To find :-

\bf {x}^{3} + \frac{1}{ {x}^{3} } .x

3

+

x

3

1

.

▶ Solution :-

\begin{lgathered}x = 3 - \sqrt{8} . \\ \\ \frac{1}{x} = \frac{1}{3 - \sqrt{8} } . \\ \\ x + \frac{1}{x} = 3 - \sqrt{8} + \frac{1}{3 - \sqrt{8} } . \\ \\ = \frac{ {(3 - \sqrt{8} )}^{2} + 1 }{3 - \sqrt{8} } . \\ \\ = \frac{ {3}^{2} + { (\sqrt{8}) }^{2} - 2 \times 3 \times \sqrt{8} + 1}{3 - \sqrt{8} } . \\ \\ = \frac{9 + 8 - 6 \sqrt{8} + 1}{3 - \sqrt{8} } . \\ \\ = \frac{18 - 6 \sqrt{8} }{3 - \sqrt{8} } \times \frac{3 + \sqrt{8} }{3 + \sqrt{8} } . \\ \\ = \frac{(18 - 6 \sqrt{8} )(3 + \sqrt{8} )}{ {3}^{2} - {( \sqrt{8} )}^{2} } . \\ \\ = \frac{54 + \cancel{18 \sqrt{8}} - \cancel{18 \sqrt{8} }- 48 }{9 - 8} . \\ \\ = 6. \\ \\ \\ \therefore x + \frac{1}{x} = 6. \\ (cubic \: both \: side) \\ \\ = > {(x + \frac{1}{x} )}^{3} = {6}^{3} . \\ \\ = > {x}^{3} + \frac{1}{ {x}^{3} } + 3 \times x \times \frac{1}{x} (x + \frac{1}{x} ) = 216. \\ \\ = >{x}^{3} + \frac{1}{ {x}^{3} } + 3 \times 6 = 216. \\ \\ = > {x}^{3} + \frac{1}{ {x}^{3} } + 18 = 216. \\ \\ = > {x}^{3} + \frac{1}{ {x}^{3} } = 216 - 18. \\ \\ \large \boxed{ \boxed{ \bf \therefore {x}^{3} + \frac{1}{ {x}^{3} } = 198.}}\end{lgathered}

x=3−

8

.

x

1

=

3−

8

1

.

x+

x

1

=3−

8

+

3−

8

1

.

=

3−

8

(3−

8

)

2

+1

.

=

3−

8

3

2

+(

8

)

2

−2×3×

8

+1

.

=

3−

8

9+8−6

8

+1

.

=

3−

8

18−6

8

×

3+

8

3+

8

.

=

3

2

−(

8

)

2

(18−6

8

)(3+

8

)

.

=

9−8

54+

18

8

18

8

−48

.

=6.

∴x+

x

1

=6.

(cubicbothside)

=>(x+

x

1

)

3

=6

3

.

=>x

3

+

x

3

1

+3×x×

x

1

(x+

x

1

)=216.

=>x

3

+

x

3

1

+3×6=216.

=>x

3

+

x

3

1

+18=216.

=>x

3

+

x

3

1

=216−18.

∴x

3

+

x

3

1

=198.

✔✔ Hence, it is solved ✅✅.

____________________________________

THANKS

#BeBrainly.

Answered by silentlover45
21

\large\underline\pink{Given:-}

  • \: \: \: \: \:  x \: \: = \: \: {3} \: + \: \sqrt{8}

\large\underline\pink{To find:-}

  • \: \: \: \: \:  {x}^{3} \: + \: \frac{1}{{x}^{3}}

\large\underline\pink{Solutions:-}

  • \: \: \: \: \:  x \: \: = \: \: {3} \: + \: \sqrt{8}

  • \: \: \: \: \:  \frac{1}{x} \: \: = \: \: \frac{1}{{3} \: + \: \sqrt{8}}

\: \: \: \: \:  Now, \: \: x \: + \: \frac{1}{x}

  • \: \: \: \: \: \: \: x \: + \: \frac{1}{x} \: \: \leadsto \: \: {3} \: + \: \sqrt{8} \: + \: \frac{1}{{3} \: + \: \sqrt{8}}

\: \: \: \: \: \: \: \leadsto \: \: \frac{{({3} \: + \: \sqrt{8})}^{2} \: + \: {1}}{{3} \: + \: \sqrt{8}}

\: \: \: \: \: \: \: \leadsto \: \: \frac{{(3)}^{2} \: + \: {(\sqrt{8})}^{2} \: + \: {2} \: \times \: {3} \: \sqrt{8} \: + \: {1}}{{3} \: + \: \sqrt{8}}

\: \: \: \: \: \: \: \leadsto \: \: \frac{{9} \: + \: {8} \: + \: {6} \: \sqrt{8} \: + \: {1}}{{3} \: + \: \sqrt{8}}

\: \: \: \: \: \: \: \leadsto \: \: \frac{{18} \: + \: {6} \: \sqrt{8}}{{3} \: + \: \sqrt{8}}

\: \: \: \: \: \: \: \leadsto \: \: \frac{{18} \: + \: {6} \: \sqrt{8}}{{3} \: + \: \sqrt{8}} \: \times \: \frac{{3} \: + \: \sqrt{8}}{{3} \: + \: \sqrt{8}}

\: \: \: \: \: \: \: \leadsto \: \: \frac{{({18} \: + \: {6} \: \sqrt{8})} \: {({3} \: + \: \sqrt{8})}}{{(3)}^{2} \: + \: {(\sqrt{8})}^{2}}

\: \: \: \: \: \: \: \leadsto \: \: \frac{{54} \: + \: {18} \: \sqrt{8} \: + \: \sqrt{8} \: + \: {48}}{{9} \: + \: {8}}

\: \: \: \: \: \: \: \leadsto \: \: \frac{146}{17}

\: \: \: \: \: \: \: \leadsto \: \: {9}

\: \: \: \: \: \: \: \leadsto \: \: x \: + \: \frac{1}{x} \: \: \leadsto \: \: {9}

\: \: \: \: \: \: \: \red{Now, \: \: Cubic \: \: both \: \: side.}

\: \: \: \: \: \: \: {({x} \: + \: \frac{1}{x})}^{3} \: \: = \: \: {(9)}^{3}

\: \: \: \: \: \: \: \leadsto \: \: {x} \: + \: \frac{1}{x} \: + \:  {3} \: \times \: {x} \: \times \: \frac{1}{x} \: {({x} \: + \: \frac{1}{x})} \: \: = \: \: {729}

\: \: \: \: \: \: \: \leadsto \: \: {x} \: + \: \frac{1}{x} \: + \: {3} \: \times \: {9} \: \: = \: \: {729}

\: \: \: \: \: \: \: \leadsto \: \: {x} \: + \: \frac{1}{x} \: + \: {27} \: \: = \: \: {729}

\: \: \: \: \: \: \: \leadsto \: \: {x} \: + \: \frac{1}{x} \: \: = \: \: {729} \: - \: {27}

\: \: \: \: \: \: \: \leadsto \: \: {x} \: + \: \frac{1}{x} \: \: = \: \: {702}

\: \: \: \: \: \: \: Hence, \: \: {x} \: + \: \frac{1}{x} \: \: = \: \: {702}

__________________________________

Similar questions