Math, asked by Soks123, 1 year ago

If x = 3-√8 ,find the value of x3+1/x3

Answers

Answered by Anonymous
79
Hey there !!


Given :-

 \bf x = 3 -  \sqrt{8} .

To find :-

 \bf  {x}^{3}  +  \frac{1}{ {x}^{3} } .


▶ Solution :-

x = 3 -  \sqrt{8} . \\  \\  \frac{1}{x} =  \frac{1}{3 -  \sqrt{8} }  . \\  \\ x +  \frac{1}{x}  = 3 -  \sqrt{8}  +  \frac{1}{3 -  \sqrt{8} } . \\  \\  =  \frac{ {(3 -  \sqrt{8} )}^{2} + 1 }{3 -  \sqrt{8} } . \\  \\  =  \frac{ {3}^{2}  +  { (\sqrt{8}) }^{2}  - 2 \times 3 \times  \sqrt{8}  + 1}{3 -  \sqrt{8} } . \\  \\  =  \frac{9 + 8 - 6 \sqrt{8}  + 1}{3 -  \sqrt{8} } . \\  \\  =  \frac{18 - 6 \sqrt{8} }{3 -  \sqrt{8} }  \times  \frac{3 +  \sqrt{8} }{3 +  \sqrt{8} } . \\  \\  =  \frac{(18 - 6 \sqrt{8} )(3 +  \sqrt{8} )}{ {3}^{2}  -  {( \sqrt{8} )}^{2} } . \\  \\  =  \frac{54 +  \cancel{18 \sqrt{8}}  -  \cancel{18 \sqrt{8} }- 48 }{9 - 8} . \\  \\  = 6. \\  \\  \\  \therefore x +  \frac{1}{x}  = 6. \\ (cubic \: both \: side) \\  \\  =  >  {(x +  \frac{1}{x} )}^{3}  =  {6}^{3} . \\  \\  =  >  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times x \times  \frac{1}{x} (x +  \frac{1}{x} ) = 216. \\  \\  =  >{x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times 6 = 216. \\  \\  =  > {x}^{3}  +  \frac{1}{ {x}^{3} } + 18 = 216. \\  \\  =  > {x}^{3}  +  \frac{1}{ {x}^{3} } = 216 - 18. \\  \\  \large \boxed{ \boxed{ \bf \therefore {x}^{3}  +  \frac{1}{ {x}^{3} } = 198.}}


✔✔ Hence, it is solved ✅✅.

____________________________________



THANKS


#BeBrainly.
Answered by siddhartharao77
43

Given : x = 3 - √8.

= > \frac{1}{x} = \frac{1}{3 - \sqrt{8}}* \frac{3+\sqrt{8}} {3 +\sqrt{8}}

=> \frac{1}{x} =\frac{3+\sqrt{8}}{(3)^2-(\sqrt{8})^2}

=> \frac{1}{x} =\frac{3+\sqrt{8}}{9 -8}

=> \frac{1}{x} =3+\sqrt{8}


Now,

⇒ x + 1/x = 3 - √8 + 3 + √8

              = 6.


Hence, x + 1/x = 6.

On cubing both sides, we get

⇒ (x + 1/x)^3 = (6)^3

⇒ x^3 + (1/x^3) + 3(x + 1/x) = 216

⇒ x^3 + (1/x^3) + 3(6) = 216

⇒ x^3 + (1/x^3) = 216 - 18

⇒ x^3 + 1/x^3 = 198.


Therefore:

=>\boxed {x^3 + \frac{1}{x^3} = 198}}



Hope it helps!

Similar questions