Math, asked by angonkonyak118, 30 days ago

if x=3+√8 find the values of x+1/x and x²+1/x2​

Answers

Answered by sandy1816
1

x = 3 +  \sqrt{8}  \\  \frac{1}{x}  =  \frac{1}{3 +  \sqrt{8} }  \\  =  \frac{3 -  \sqrt{8} }{9 - 8}  \\ (rationalizing \: denominator) \\   \frac{1}{x} = 3 -  \sqrt{8}  \\  \implies \: x +   \frac{1}{x}  = 6 \\ ( {x +  \frac{1}{x} })^{2}  = 36 \\   \implies{x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 36 \\  \implies {x}^{2}  +  \frac{1}{ {x}^{2} }  = 34

Answered by chirag9090singh9090
0

\huge\color{cyan}\boxed{\colorbox{black}{ANSWER ❤}}

x +  \frac{1}{x}  = 3 +  \sqrt{8}  +  \frac{1}{3 +  \sqrt{8} }  \\

 = 3 +  \sqrt{8}  +  \frac{1(3 -  \sqrt{8}) }{(3 +  \sqrt{8} )(3 -  \sqrt{8} )}  \\

 = 3 +  \sqrt{8}  +  \frac{3 -  \sqrt{8} }{9 - 8}  \\

 = 3 +  \sqrt{8}  + 3 -  \sqrt{8}

 = 6

___________________________________________

 {x}^{2}  +  \frac{1}{ {x}^{2} }  \\

 =  {(x)}^{2}  +  {( \frac{1}{x} )}^{2}  + 2(x)( \frac{1}{x} ) - 2(x)( \frac{1}{x} )

 =  {(x +  \frac{1}{x}) }^{2}  - 2

 =  {(6)}^{2}  - 2

 = 36 - 2

 = 34

Similar questions