if x=3+^8,find the volue of x2+ 1÷x2
Answers
Question :
If x = 3 + √8 , then find the value of x² + 1/x² .
Answer :
x² + 1/x² = 34
Solution :
- Given : x = 3 + √8
- To find : x² + 1/x² = ?
We have ,
x = 3 + √8
Thus ,
1/x = 1/(3 + √8)
Now ,
Rationalising the denominator in RHS ,
We have ;
=> 1/x = (3 - √8) / (3 + √8)(3 - √8)
=> 1/x = (3 - √8) / [ 3² - (√8)² ]
=> 1/x = (3 - √8) / (9 - 8)
=> 1/x = 3 - √8
Now ,
We know that ,
(a + b)² = a² + b² + 2ab
Thus ,
=> (x + 1/x)² = x² + (1/x)² + 2•x•(1/x)
=> (x + 1/x)² = x² + 1/x² + 2
=> (3 + √8 + 3 - √8)² = x² + 1/x² + 2
=> 6² = x² + 1/x² + 2
=> 36 = x² + 1/x² + 2
=> x² + 1/x² = 36 - 2
=> x² + 1/x² = 34
Hence,
x² + 1/x² = 34
Question :-
- If x = 3 + √8 , find the value of x² + 1/x².
Answer :-
- x² + 1/x² = 34
Solution :-
- Given = x = 3 + √8
- To find = x² + 1/x² = ?
We have ,
x = 3 + √8
Thus ,
1/x = 1/(3 + √8)
Now ,
Retionalisling the denominator in RHS ,
We have ,
→ 1/x = (3 - √8) / (3 + √8)(3 - √8)
→ 1/x = (3 - √8) / [ 3² - (√8)² ]
→ 1/x = (3 - √8) / (9 - 8)
→ 1/x = 3 - √8
Now ,
★ We know that ★
(a6 + b)² = a² + b² + 2ab
Thus ,
→ (x + 1/x)² = x² + (1/x)² + 2•x•(1/x)
→ (x + 1/x)² = x² + 1/x² + 2
→ (3 + √8 + 3 - √8)² = x² + 1/x² + 2
→ 6² = x² + 1/x² + 2
→ 36 = x² + 1/x² + 2
→ x² + 1/x² = 36 - 2
→ x² + 1/x² = 34
Hence,
- x² + 1/x² = 34