Math, asked by gamerz080708, 2 months ago

If x= 3+√8, find x²+(1/x²)​

Answers

Answered by riyakhatua76
2

Hope it is helpful !!!!

Step-by-step explanation:

x = 3+ √8

x = 3+ √8x = (3+√8)(3-√8) / (3-√8)

x = 3+ √8x = (3+√8)(3-√8) / (3-√8)x = (9 -8) / (3-√8)

x = 3+ √8x = (3+√8)(3-√8) / (3-√8)x = (9 -8) / (3-√8)x = 1/ (3 -√8)

x = 3+ √8x = (3+√8)(3-√8) / (3-√8)x = (9 -8) / (3-√8)x = 1/ (3 -√8)Or we can write 1/x = (3-√8)

x = 3+ √8x = (3+√8)(3-√8) / (3-√8)x = (9 -8) / (3-√8)x = 1/ (3 -√8)Or we can write 1/x = (3-√8)Put the value and find out

x = 3+ √8x = (3+√8)(3-√8) / (3-√8)x = (9 -8) / (3-√8)x = 1/ (3 -√8)Or we can write 1/x = (3-√8)Put the value and find outx² +(1/x²) = x² + (1/x)²

x = 3+ √8x = (3+√8)(3-√8) / (3-√8)x = (9 -8) / (3-√8)x = 1/ (3 -√8)Or we can write 1/x = (3-√8)Put the value and find outx² +(1/x²) = x² + (1/x)²So x² + 1/ x² = (3 +√8)² + (3 -√8)²

x = 3+ √8x = (3+√8)(3-√8) / (3-√8)x = (9 -8) / (3-√8)x = 1/ (3 -√8)Or we can write 1/x = (3-√8)Put the value and find outx² +(1/x²) = x² + (1/x)²So x² + 1/ x² = (3 +√8)² + (3 -√8)²= 9+6√8+8 + 9–6√8+8

x = 3+ √8x = (3+√8)(3-√8) / (3-√8)x = (9 -8) / (3-√8)x = 1/ (3 -√8)Or we can write 1/x = (3-√8)Put the value and find outx² +(1/x²) = x² + (1/x)²So x² + 1/ x² = (3 +√8)² + (3 -√8)²= 9+6√8+8 + 9–6√8+8= 34. Ans…………...

Answered by Anonymous
5

x = 3 +  \sqrt{8}

Squaring both sides, we have

  {x}^{2} =  ( {3 +  \sqrt{8} })^{2}

\longrightarrow{\green{}}   ({3})^{2}  +  ({ \sqrt{8} })^{2}  + 2 \times 3 \times  \sqrt{8}

\longrightarrow{\green{}}   9 + 8 + 12 \sqrt{2}

\longrightarrow{\green{}}   17 + 12 \sqrt{2}

Let us solve for \frac{1}{ {x}^{2} } by rationalising the denominator.

\longrightarrow{\green{}}  \frac{1}{17 + 12 \sqrt{2} }  \times  \frac{17 - 12 \sqrt{2} }{17 - 12 \sqrt{2} } \\

\longrightarrow{\green{}}  \frac{17 - 12 \sqrt{2} }{ ({17})^{2} -  ({12 \sqrt{2} })^{2}  }\\

\longrightarrow{\green{}}  \frac{17 - 12 \sqrt{2} }{289 - 288}\\

\longrightarrow{\green{}}  \frac{17 - 12 \sqrt{2} }{1} \\

\longrightarrow{\green{}} 17 - 12 \sqrt{2}\\

And finally substitute their values in the expression below.

\longrightarrow{\green{}}  {x}^{2}  + ( { \frac{1}{x} })^{2}

\longrightarrow{\green{}} 17  + 12 \sqrt{2}  + 17 - 12 \sqrt{2}

\longrightarrow{\green{34}}

Similar questions