Math, asked by bhagwatibajaj18, 4 months ago


If x= (3+√8), show that (x² + 1 / x² ) = 34​

Answers

Answered by PharohX
4

Step-by-step explanation:

Given :-

x  = 3 +  \sqrt{8}

To Prove :-

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 34 \\

Proof :-

Here.

x = 3 +  \sqrt{8}

then

 \frac{1}{x}  =  \frac{1}{3 +  \sqrt{8} }  \\   \\  =  \frac{1}{3 +  \sqrt{8} }  \times  \frac{3 -  \sqrt{8} }{3 -  \sqrt{8} } \\  \\   =  \frac{3 -  \sqrt{8} }{ {3}^{2}  - ( { \sqrt{8}) }^{2} }  \\  \\  =   \frac{3 -  \sqrt{8} }{9 - 8}  = 3 -  \sqrt{8}  \\  \\  =    >  \frac{1}{x}  = 3 -  \sqrt{8}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now

x +  \frac{1}{x}  = (3 +  \sqrt{8} ) + (3 -   \sqrt{8} ) \\  \\  x +  \frac{1}{x} = 6

Squaring both side

(x +  \frac{1}{x} ) {}^{2}  =  {6}^{2}  \\  \\ =  >   {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2x \times  \frac{1}{x}  = 36 \\  \\ =  >   {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 36 \\  \\  =  >  {x}^{2}   +  \frac{1}{ {x}^{2} }  = 36 - 2 = 34 \\  \\  =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 34

Proved

Similar questions