Math, asked by kuttysaji, 11 months ago

if x = 3 + √8, then find the value of
x²+1/x²

solve it ...​

Answers

Answered by tamaghnadey1916
1

Answer:

I hope that helps you....

Please mark me the BRAINLIEST

Attachments:
Answered by Delta13
2

Given:

x = 3 +  \sqrt{8}

To find:

 {x}^{2}  +  \frac{1}{ {x}^{2} }  =  ?

Solution:

 x = 3 +  \sqrt{8}  \\  \\  \frac{1}{x}  =  \frac{1}{3 +  \sqrt{8} }  \\  \\ rationalizing \: the \: denominator \\  \\  =  >  \frac{1}{3 +  \sqrt{8}} \frac{ \times  \: (3 -  \sqrt{8}) }{ \times \:  (3 -  \sqrt{8}) }  \\  \\  using \: identity \: ( {a  }^{2}  -  {b}^{2}) = (a + b)(a - b)  \\ =  >  \frac{3 -  \sqrt{8} }{ {3}^{2} - ( \sqrt{8}) {}^{2}   }  \\  \\  =  >  \frac{3 -  \sqrt{8} }{9 - 8}  \\  \\  =  >  \frac{1}{x}  = 3 -  \sqrt{8}  \\  \\

To  \: find \:  the \: value \: of \: x^{2}  +  \frac{1}{ {x}^{2} }

(x +  \frac{1}{x} ) {}^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2(x)( \frac{1}{x} )

 =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  = (x +  \frac{1}{x} ) {}^{2}  - 2  \:  \:  -  - (1)

The \: value \: of \:  \\  {x} +  \frac{1}{x} \\  \\ sustituting \: values \\   = 3 +  \sqrt{8}  + (3 -  \sqrt{8} ) \:  \\  \\  =  &gt; x +  \frac{1}{x}  = 6 \:  \:  \:  \:</u><u>----</u><u> (2)

We have,

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = ( {x} +  \frac{1}{x} ) {}^{2}  - 2 \:  \:

sustituting  \: values \: from \:  \: 2 \: in \:  \: 1

We get,

 {x}^{2}  +  \frac{1}{ {x}^{2}  }  = ( {6})^{2}  - 2 \\  \\  =  &gt; 36 - 2 \\  \\  =  &gt; 34

Hence, 34 is the answer.

If it helps you then Mark as brainliest.

Similar questions