Math, asked by jaynepatel, 7 months ago

If x=3+√8, then find the value ofx^3+1/x^3.

Answers

Answered by souravsarkar045
0

Answer:

Answer is 198.

Plz mark as brainliest.

Step-by-step explanation:

Given,

x = 3 +  \sqrt{8}  \\  \therefore \:  \frac{1}{x}  =  \frac{1}{3 +  \sqrt{8} }  \\  =  >  \frac{1}{x}  =  \frac{3 -  \sqrt{8} }{(3 +  \sqrt{8} )(3 -  \sqrt{8} )}  \\  =  >  \frac{1}{x}  =  \frac{3 -  \sqrt{8} }{( {3})^{2} -  { (\sqrt{8} )}^{2}   }  \\  =  >  \frac{1}{x}  =  \frac{3 -  \sqrt{8} }{9 - 8}  \\  =  >  \frac{1}{x}  = 3 -  \sqrt{8}  \\  \therefore \:  {x}^{3}  +  \frac{1}{ {x}^{3} }  =  {(x +  \frac{1}{x}) }^{3}  - 3.x. \frac{1}{x} (x +  \frac{1}{x} ) \\  =  >  {x}^{3}  +  \frac{1}{ {x}^{3} }  =  {(3 +  \sqrt{8} + 3 -  \sqrt{8} ) }^{3}  - 3(3 +  \sqrt{8}  + 3 -  \sqrt{8} ) \\  =  >  {x}^{3}  +  \frac{1}{ {x}^{3} }  =  {6}^{3}  - 3 \times 6 \\  =  >  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 216 - 18 \\  =  >  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 198

Similar questions