Math, asked by thirustore2012, 7 months ago

if x=3+√8 then the value of √x-1/√x is​

Answers

Answered by Bidikha
2

Given-

x = 3 +  \sqrt{8}

To find -

the \: value \: of \:   \sqrt{x}   -  \frac{1}{ \sqrt{x} }

Solution -

 \implies x = 3 +  \sqrt{8}

\implies \:  \sqrt{x}  =  \sqrt{3 +  \sqrt{8} }

\implies \sqrt{x}  =  \sqrt{3 +  \sqrt{2 \times 4} }

\implies \sqrt{x}  =  \sqrt{3 + 2 \sqrt{2} }

\implies  \sqrt{x}  =  \sqrt{3 + 2 \sqrt{2} \times  \sqrt{1}  }

\implies \sqrt{x}  =  \sqrt{ { \sqrt{2} }^{2}  +  { \sqrt{1} }^{2} + 2 \times  \sqrt{2} \times  \sqrt{1}   }

\implies \sqrt{x}  =  \sqrt{ {( \sqrt{2}  +  \sqrt{1} )}^{2} }

\implies \sqrt{x}  =  \sqrt{2}  +  \sqrt{1}

again

 \frac{1}{ \sqrt{x} }  =  \frac{1}{ \sqrt{2 }  +  \sqrt{1} }

By \: rationalising \: the \: denominator

 \frac{1}{ \sqrt{x} }  =   \frac{ \sqrt{2} -  \sqrt{1}  }{( \sqrt{2}  +  \sqrt{1} )( \sqrt{2}  -  \sqrt{1}) }

 \frac{1}{ \sqrt{x} }  =  \frac{ \sqrt{2} -  \sqrt{1}  }{ { \sqrt{2}  }^{2}  -  { \sqrt{1} }^{2} }

  \frac{1}{ \sqrt{x} }   =  \frac{ \sqrt{2}  -  \sqrt{1} }{ { \sqrt{2} }^{2}  -  { \sqrt{1} }^{2} }

 \frac{1}{ \sqrt{x} }  =  \frac{ \sqrt{2}  -  \sqrt{1} }{1}

 \frac{1}{ \sqrt{x} }  =  \sqrt{2}  -  \sqrt{1}

Now

 =  \sqrt{x}  -  \frac{1}{ \sqrt{x} }

 =  \sqrt{2}  +  \sqrt{1}  - ( \sqrt{2}  -  \sqrt{1} )

 =  \sqrt{2}  +  \sqrt{1}  -  \sqrt{2}  +  \sqrt{1}

 = 2 \sqrt{1}

Similar questions