Math, asked by Naina58613, 7 months ago

If x = 3-✓8 then ( x + 1/x ) equals to ...................​

Answers

Answered by aryan073
1

Step-by-step explanation:

x = 3 -  \sqrt{8}

 \bigg(3 -  \sqrt{8}  +  \frac{1}{3 -  \sqrt{8} }  \bigg)

 \:  \:  \:  \mapsto \sf{ \frac{ 3(3 -  \sqrt{8} ) -  \sqrt{8} (3 -  \sqrt{8} ) + 1}{3 -  \sqrt{8} }}

 \:  \:  \:  \:  \implies \sf{ \frac{(9 - 3 \sqrt{8}  - 3 \sqrt{8}   + 8) + 1}{3 -  \sqrt{8} }}

 \:  \:  \:  \:  \implies \sf{ \frac{18  - 6 \sqrt{8} }{3 -  \sqrt{8} } } \: is \: the \: answer

Answered by Blossomfairy
12

Given :

  • x = 3 - √8

To find :

  • x + 1/x

According to the question,

 \sf \implies {\dfrac{1}{x}  = \dfrac{1}{ 3 -  \sqrt{8} }  \times  \dfrac{3 +  \sqrt{8} }{3 +  \sqrt{8} }  } \\  \\  \implies \sf{ \frac{3 +  \sqrt{8} }{9 - 8} } \\  \\  \implies \sf{3 +  \sqrt{8} } \green \bigstar

 \implies \sf{x +  \dfrac{1}{ x } } \\  \\  \implies \sf{3 -   \cancel{\sqrt{8} } + 3 +   \cancel{\sqrt{8} }} \\  \\  \implies \sf{6} \green \bigstar

So,the value of x + 1/x is 6...

Similar questions