Math, asked by varnwaldivyanshu, 1 month ago

If x^3-ax+b and x^2 - cx+ d are divisible by x-m, then prove that m = d - b / c - a​

Answers

Answered by itzMeGunjan
5

Your Question :-

  • \bf{If \:{x}^{ \red{3}}-ax+b \:and\: x² - cx+ d\: are\:divisible\: by\: x-m, \:then \:prove \:that\: m = \frac{ d - b}  {c - a}}

But there is an mistake in your question the equation should be.

Question :-

  • \bf{If \:{x}^{ \green{2}}-ax+b \:and\: x² - cx+ d\: are\: divisible\: by\: x-m, \:then \:prove \:that\: m = \frac{ d - b}  {c - a}}

\underline{\displaystyle{\green{\bold{Solution}:-}}}

   \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \mathrm{x {}^{2} - ax + b } -  -  ( {eq}^{n}  \: 1) \:  \:  \:  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \mathrm{x {}^{2}  - cx + d } -  -  ( {eq}^{n}  \: 2) \:  \:  \:  \\

\red{\bigstar}]Both Equation are divisible by x - m [Given in qu.]

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{x - m = 0} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\ \:  \:  \rightarrow  \boxed{ \bold{ x = m}} \:  \:  \:  \:  \:  \:

Now, Putting x = m in both 1 & 2 equation.

\begin{aligned}\cancel{ {m}^{2}} - am+b& =0\\ \cancel{{m}^{2}} - cm +d & =0 \\  \: \: \: \: \: \underline{\: \:  \: \: \:- \: \:  \: \: \:+ \:  \: \: \: \: -\: \:   \:  \: \: \:}  \end{aligned}

(-a +c ) m + b - d = 0

( c - a ) m + b-d = 0

( c-a ) m = d - b

 \implies \boxed{\underline{\bf{\green{m = \frac{d - b}{c - a}}}}}

Hence Proved .

Similar questions