if x= 3 cosAcosB, y = 3 cosAsinB and z= 3sinA, prove that x2+y2+z2=9
Answers
Answered by
18
x = 3 cosA cosB
square on both sides,
x² = 9 cos²A cos²B -----: ( 1 )
y = 3 cosA sinB
square on both sides,
y² = 9 cos²A sin²B -----: ( 2 )
z = 3 sinA
squares on both sides,
z² = 9 sin²A ------: ( 3 )
adding 1 , 2 and 3
x² + y² + z² = 9 cos²A cos²B + 9 cos²A sin²B + 9 sin²A
x² + y² + z² = 9[ cos²A cos²B + cos²A sin²B + sin²A ]
x² + y² + z² = 9 [ cos²A{ cos²B + sin²B } + sin²A ]
x² + y² + z² = 9[ cos²A ( 1 ) + sin²A ]
x² + y² + z² = 9[ cos²A + sin²A ]
x² + y² + z² = 9( 1 )
x² + y² + z² = 9
Proved.
square on both sides,
x² = 9 cos²A cos²B -----: ( 1 )
y = 3 cosA sinB
square on both sides,
y² = 9 cos²A sin²B -----: ( 2 )
z = 3 sinA
squares on both sides,
z² = 9 sin²A ------: ( 3 )
adding 1 , 2 and 3
x² + y² + z² = 9 cos²A cos²B + 9 cos²A sin²B + 9 sin²A
x² + y² + z² = 9[ cos²A cos²B + cos²A sin²B + sin²A ]
x² + y² + z² = 9 [ cos²A{ cos²B + sin²B } + sin²A ]
x² + y² + z² = 9[ cos²A ( 1 ) + sin²A ]
x² + y² + z² = 9[ cos²A + sin²A ]
x² + y² + z² = 9( 1 )
x² + y² + z² = 9
Proved.
tejasri2:
ok
Answered by
8
Given,
x = 3cosAcosB
y = 3cosAsinB
z = 3sinA
Now,
x = 3cosAcosB
Making square of both sides,
x² = 9cos²Acos²B ........................i)
Similarly,
y² = 9cos²Asin²B...................ii)
z²= 9sin²A ................iii)
Adding equation i), ii) and iii)
x² + y² + z² = 9cos²Acos²B + 9cos²Asin²B + 9sin²A
x² + y² + z² = 9cos²A(cos²A + sin²A) + 9sin²A
x² + y² + z² = 9cos²A×1 + 9sin²A (∵sin²Ф+cos²Ф=1)
x² + y² + z² = 9cos²A + 9sin²A
x² + y² + z² = 9(cos²A + sin²A)
x² + y² + z² = 9 × 1
x² + y² + z² = 9
Similar questions