Math, asked by dilipkalita410, 10 months ago

If x = √3 +i and y= V3 -i,
then find the value of 7x2 - 11xy + 7y2​

Answers

Answered by sanketj
1

x =  \sqrt{3 }  + i \\ {x}^{2}  =  {( \sqrt{3}  + i) }^{2}  = 3 +  {i}^{2} + 2 \sqrt{3} i \\  {x}^{2}   = 3 - 1 + 2 \sqrt{3} i \:  \:  \:  \:  \:  \:  \:  \:  \: ...( {i}^{2}  =  - 1) \\  {x}^{2}  = 2 + 2 \sqrt{3} i \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(i) \\  \\ y =  \sqrt{3 }  - i \\  {y}^{2}  =  {( \sqrt{3}  - i)}^{2}  = 3 +  {i}^{2} - 2 \sqrt{3}  i \\  {y}^{2}  = 3 - 1 - 2 \sqrt{3} i \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  ...( {i}^{2}  =  - 1) \\  {y}^{2}  = 2 - 2 \sqrt{3} i \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \: ...(ii) \\  \\ xy = ( \sqrt{3}  + i)( \sqrt{3}  - i) \\ xy =  {( \sqrt{3}) }^{2}  -  {(i)}^{2}  = 3 - ( - 1) = 3 + 1 \\ xy = 4

Hence,

7x² - 11xy + 7y²

= 7(2 + 2√3i) - 11(4) + 7(2 - 2√3i)

= 14 + 14√3i - 44 + 14 - 14√3i

= 14 + 14 - 44 + 14√3i - 14√3i = 28 - 44 + 0

= -16

Hence, 7x² - 11xy + 7y² = -16.

Similar questions