If x = -3 is a solution of the quadratic equation 3x2
+ 2kx – 3 = 0, find the value of k.
Answers
Given :
- The given quadratic equation is 3x²+2kx-3=0
- The value of x =-3
To Find :
- The value of k=?
Solution :
⇒The given quadratic equation is 3x²+2kx-3=0
⇒x=-3
According to the given conditions :
⇒The value of k is 4
•If the question ask to find the roots of the given quadratic equation we use formula method and determinant method.
Step-by-step explanation:
Given :
•The given quadratic equation is 3x²+2kx-3=0
•The value of x =-3
To Find :
• The value of k=?
Solution :
⇒The given quadratic equation is 3x²+2kx-3=0
⇒x=-3
According to the given conditions :
\begin{gathered}\\ \blue\bigstar\large\green{\underline{\sf{Substitute \: the \: value \: of \: x \: in \: equation }}}\end{gathered}
★
Substitutethevalueofxinequation
\begin{gathered} \ \\ \implies \sf \: 3 {x}^{2} + 2kx - 3 = 0 \\ \\ \\ \implies \sf \: 3 {( - 3)}^{2} + 2k( - 3) - 3 = 0 \\ \\ \\ \implies \sf \: 3 \times 9 - 6k - 3 = 0 \\ \\ \\ \implies \sf \: 27 - 6k - 3 = 0 \\ \\ \\ \implies \sf \: 27 - 3 - 6k = 0 \\ \\ \\ \implies \sf \: 24 - 6k = 0 \\ \\ \\ \implies \sf \: k = \frac{24}{6} \\ \\ \\ \implies \boxed{ \sf{k = 4}}\end{gathered}
⟹3x
2
+2kx−3=0
⟹3(−3)
2
+2k(−3)−3=0
⟹3×9−6k−3=0
⟹27−6k−3=0
⟹27−3−6k=0
⟹24−6k=0
⟹k=
6
24
⟹
k=4
⇒The value of k is 4
\begin{gathered}\\ \large\green{\underline{\sf{Additional \: information :}}}\end{gathered}
Additionalinformation:
•If the question ask to find the roots of the given quadratic equation we use formula method and determinant method.
\begin{gathered}\\ \star\pink{\underline{\sf{Formula \: method}}}\end{gathered}
⋆
Formulamethod
\red \bigstar \boxed{ \sf{x = \frac{ - b \pm \sqrt{ {b}^{2} - 4ac} }{2a} }}★
x=
2a
−b±
b
2
−4ac
\begin{gathered}\\ \star\pink{\underline{\sf{Determinant \: method}}}\end{gathered}
⋆
Determinantmethod
\red \bigstar \boxed{ \sf{ \delta d = {b}^{2} - 4ac}}★
δd=b
2
−4ac