If (x+3)is the factor of polynomial x³+ax²+x+3 then a is
Answers
Step-by-step explanation:
Question :
If (x+3) is the factor of polynomial x³+ax²+x+3 then, the value of a is :
To find:
The value of a =?
\large\sf{\color{green} SOLUTION :}SOLUTION:
\hspace{3em}\implies \bf \: x + 3 = 0⟹x+3=0
\begin{gathered} \\ \hspace{3em} \implies \bf \: x = - 3 \: \: \: ....put \: the \: value \: in \: equation\end{gathered}
⟹x=−3....putthevalueinequation
\quad\implies \displaystyle \sf \: {x}^{3} + {ax}^{2} + x + 3 = 0⟹x
3
+ax
2
+x+3=0
\begin{gathered} \\ \quad \implies \sf \: {( - 3)}^{3} + a {( - 3)}^{2} + ( - 3) + 3 = 0\end{gathered}
⟹(−3)
3
+a(−3)
2
+(−3)+3=0
\quad \implies \sf \: - 27 + 9a \cancel{ - 3 + 3} = 0⟹−27+9a
−3+3
=0
\begin{gathered} \\ \quad \implies \sf \: - 27 = - 9a\end{gathered}
⟹−27=−9a
\begin{gathered} \\ \quad \implies \sf \: a = \frac{27}{9} = \cancel \frac{27}{9} = 3\end{gathered}
⟹a=
9
27
=
9
27
=3
\: \qquad \therefore \boxed{ \underline{ \bf{the \: value \: of \: a \: is \: 3}}}∴
thevalueofais3