Math, asked by murukarthikakdz, 1 year ago

if x = 3+ root 8, show that
[x square + 1 by x square] = 34

Answers

Answered by mysticd
40
Hi ,

x = 3 + √8 ,

1/x = 1/( 3 + √8 )

= ( 3 - √8 )/[ ( 3 + √8 )( 3 - √8 ) ]

= ( 3 - √8 )/[ ( 3² - ( √8 )²

= ( 3 - √ 8 )/ ( 9 - 8 )

= 3 - √8

x + 1/x = 3 + √8 + 3 - √8 = 6

Now ,

LHS = x² + 1/x² = ( x + 1/x )² - 2

= 6² - 2

= 36 - 2

= 34

= RHS

Hence proved.

I hope this helps you.

: )


murukarthikakdz: thanks dude it helped me a lot
Answered by siddhartharao77
13
Given x = 3 root 8.

Now,

 = \ \textgreater \  \frac{1}{x} =  \frac{1}{3 +  \sqrt{8} } *  \frac{3 -  \sqrt{8} }{3 -  \sqrt{8} }


= \ \textgreater \   \frac{3 -  \sqrt{8} }{(3)^2 - ( \sqrt{8} )^2}

= \ \textgreater \   \frac{3 -  \sqrt{8} }{9-8}

= \ \textgreater \  3 -  \sqrt{8}

Now,

x +  \frac{1}{x} = 3 +  \sqrt{8} + 3 -  \sqrt{8}

                             = 6.



Therefore:

= \ \textgreater \  (x^2 +  \frac{1}{x^2} ) = (x +  \frac{1}{x})^2 - 2 * x *  \frac{1}{x}

= \ \textgreater \  6^2 - 2

= > 36 - 2

= > 34.


Hope this helps!

murukarthikakdz: bro it helped me thanks
Similar questions