if x = 3 + root 8 ; then what is x^2 + 1 /x^2
Attachments:
Answers
Answered by
7
x = 3 + √8
x² = ( 3 + √8 )²
[ ( a + b )² = a² + b² + 2ab ]
= ( 3 )² + ( √8 )² + 2 ( 3 ) ( √8 )
= 9 + 8 + 6√8
= 17 + 6√( 2³ )
x² = 17 + 12√2
1 / x² = 1 / ( 17 + 12√2 )
= [ 1 / ( 17 + 12√2 ) ] × [ ( 17 - 12√2 ) / ( 17 - 12√2 ) ]
[ ( a + b ) ( a - b ) = a² - b² ]
= ( 17 - 12√2 ) / ( 17 )² - ( 12√2 )²
= ( 17 - 12√2 ) / ( 289 - 288 )
1 / x² = 17 - 12√2
Now,
x² + ( 1 / x² ) :
= 17 + 12√2 + 17 - 12√2
= 34
Hence, the answer is 34.
x² = ( 3 + √8 )²
[ ( a + b )² = a² + b² + 2ab ]
= ( 3 )² + ( √8 )² + 2 ( 3 ) ( √8 )
= 9 + 8 + 6√8
= 17 + 6√( 2³ )
x² = 17 + 12√2
1 / x² = 1 / ( 17 + 12√2 )
= [ 1 / ( 17 + 12√2 ) ] × [ ( 17 - 12√2 ) / ( 17 - 12√2 ) ]
[ ( a + b ) ( a - b ) = a² - b² ]
= ( 17 - 12√2 ) / ( 17 )² - ( 12√2 )²
= ( 17 - 12√2 ) / ( 289 - 288 )
1 / x² = 17 - 12√2
Now,
x² + ( 1 / x² ) :
= 17 + 12√2 + 17 - 12√2
= 34
Hence, the answer is 34.
Similar questions