Math, asked by AdityaBendi, 11 months ago

If x = 3-root5 the find (Root x)/(root 2 + root 3x-2)
(Q30 Attached Picture)

Attachments:

Answers

Answered by nichala23
22

Step-by-step explanation:

Hope this helps u Please make me as a brainliest

Attachments:
Answered by rohitkumargupta
3

Answer:

1/5

Step-by-step explanation:

given:- x = 3-5

we have to find \sf{\frac{\sqrt{x}}{\sqrt{2} + \sqrt{3x - 2}}}

=> x = (3-5)

=> x = \sf{\sqrt{\frac{2(3-\sqrt{5})}{2}}}

=> √x = \sf{\sqrt{\frac{6-2\sqrt{5}}{2}}}

=> x = \sf{\sqrt{\frac{1^2 + \sqrt{5}^2 - 2\sqrt{5}}{2}}}

=> x = \sf{\frac{\sqrt{5}-1}{\sqrt{2}}}

=> x = \bold{\frac{(\sqrt{5}-1)}{\sqrt{2}}}

also, (3x-2) = {3(3-5)-2}

=> (3x-2) = (9-35-2)

=> (3x-2) = {2(7-35)/2}

=> (3x-2) = {(14-65)/2}

=> (3x-2) = {3² + (5)² - 2*35}/2

=> (3x-2) = { (3-5)²/2}

=> (3x-2) = (3-5)/2

so,

\sf{\frac{\sqrt{x}}{\sqrt{2} - \sqrt{3x - 2}}}

=> \sf{\frac{\frac{\sqrt{5}-1}{\sqrt{2}}}{\sqrt{2}+\frac{3-\sqrt{5}}{\sqrt{2}}}}

=> \sf{\frac{\sqrt{5}-1}{2+(3-\sqrt{5})}}

=> \sf{\frac{\sqrt{5}-1}{5-\sqrt{5}}}

=> \sf{\frac{\sqrt{5}-1}{5-\sqrt{5}} *\frac{5+\sqrt{5}}{5+\sqrt{5}}}

=> \sf{\frac{5\sqrt{5}-5 +5 -\sqrt{5}+5}{25-5}}

=> \sf{\frac{4\sqrt{5}}{20}}

=> \bold{\sqrt{5}/5}

=> \bold{1/\sqrt{5}}

#SPJ3

Similar questions