If x = 3 + root8, find the value of x^2 + 1/x^2.
Answers
Answered by
9
AGAIN 1/X=1/(3+√8)=(3-√8)/(3²-(√8)²)=3-√8
S0 1/X²=(3-√8)²
X²+1/X²=(3+√8)²+(3-√8)²=2(9+8)=34
S0 1/X²=(3-√8)²
X²+1/X²=(3+√8)²+(3-√8)²=2(9+8)=34
Answered by
1
Answer:
34
Step-by-step explanation:
x=3+√8
=> 1/x=1/3+√8 × 3-√8/3-√8 = 3-√8/(3)^2-(√8)^2
=3-√8/9-8 = 3-√8/1 = 3-√8
Now, (x^2 + 1/x^2) = [(3+√8)^2 + (3-√8)^2]
=[(9+8+6√8) + (9+8-6√8)]
=(17+6√8 + 17-6√8)
=34
Hope It Helps!!
Similar questions