Math, asked by pagal221, 3 months ago

if x = 3 + \sqrt{8}x=3+8​ then the value of( {x}^{2} + 1 \div {x}^{2} )(x2+1÷x2) is​

Answers

Answered by Anonymous
4

Answer:

Given

\sf\to x = 3+\sqrt{8}

To find

\sf\to x^2+\dfrac{1}{x^2}

Now we can write as

\sf\to\dfrac{1}{x}=\dfrac{1}{3+\sqrt{8}}

Now rationalise

\sf\to\dfrac{1}{x}=\dfrac{1}{3+\sqrt{8}}\times\dfrac{3-\sqrt{8}}{3-\sqrt{8}}=\dfrac{3-\sqrt{8}}{9-8} =3-\sqrt{8}

we get

\sf\to\dfrac{1}{x} =3-\sqrt{8}

Using this identities

\to\sf (a+b)^2= a^2+b^2+2ab

\sf\to\bigg(x+\dfrac{1}{x}\bigg)^2=x^2+\dfrac{1}{x^2}+2\times x\times\dfrac{1}{x}

Now put the value of x and 1/x

\sf\to (3+\sqrt{8}+3-\sqrt{8})^2=x^2+\dfrac{1}{x^2} +2

\sf\to (3+3)^2=x^2+\dfrac{1}{x^2} +2→(3+3)

\sf\to (6)^2=x^2+\dfrac{1}{x^2} +2→(6)

\sf\to 36=x^2+\dfrac{1}{x^2}

\sf\to x^2+\dfrac{1}{x^2}

\sf\to x^2+\dfrac{1}{x^2}

Answer:-

\sf\to x^2+\dfrac{1}{x^2}

Answered by XxMrLegend7532xX
5

Answer:

Given

\sf\to x = 3+\sqrt{8}

To find

\sf\to x^2+\dfrac{1}{x^2}

Now we can write as

\sf\to\dfrac{1}{x}=\dfrac{1}{3+\sqrt{8}}

Now rationalise

\sf\to\dfrac{1}{x}=\dfrac{1}{3+\sqrt{8}}\times\dfrac{3-\sqrt{8}}{3-\sqrt{8}}=\dfrac{3-\sqrt{8}}{9-8} =3-\sqrt{8}

we get

\sf\to\dfrac{1}{x} =3-\sqrt{8}

Using this identities

\to\sf (a+b)^2= a^2+b^2+2ab

\sf\to\bigg(x+\dfrac{1}{x}\bigg)^2=x^2+\dfrac{1}{x^2}+2\times x\times\dfrac{1}{x}

Now put the value of x and 1/x

\sf\to (3+\sqrt{8}+3-\sqrt{8})^2=x^2+\dfrac{1}{x^2} +2

\sf\to (3+3)^2=x^2+\dfrac{1}{x^2} +2→(3+3)

\sf\to (6)^2=x^2+\dfrac{1}{x^2} +2→(6)

\sf\to 36=x^2+\dfrac{1}{x^2}

\sf\to x^2+\dfrac{1}{x^2}

\sf\to x^2+\dfrac{1}{x^2}

Answer:-

\sf\to x^2+\dfrac{1}{x^2}

Similar questions