Math, asked by Danielkp, 1 year ago

If x=3+sqrt of 8 , find x^4+1/x^4

Answers

Answered by Anonymous
93
x = 3 +√8, 1/x = 3- √8


x^4 + 1/x^4
= (x² + 1/x²)²- 2
= ( (x+1/x)² - 2 )² - 2
= (6² - 2)² -2
= 34² - 2
= 1156 -2
= 1154


Danielkp: The value of 1/x seems to be wrong
DaIncredible: no dear it's correct i guess
DaIncredible: 3 - 2√2 will be the value of 1/x
DaIncredible: ohh sorry i thought you are saying to me
Anonymous: its correct
DaIncredible: hey dear check my answer once
Answered by DaIncredible
186
Hey friend,
Here is the answer you were looking for:
x = 3 +  \sqrt{8}  \\  \\ x = 3  +  \sqrt{2  \times 2 \times 2}  \\  \\ x = 3 + 2 \sqrt{2}  \\  \\  \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} }  \\  \\   \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} }  \times  \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }  \\  \\ using \: the \: identity \\ (a + b)(a - b) =  {a}^{2} -  {b}^{2} \\  \\  =  \frac{3 - 2 \sqrt{2} }{ {(3)}^{2} -  {(2 \sqrt{2} )}^{2}  }  \\  \\  \frac{1}{x}  =  \frac{3 - 2 \sqrt{2} }{9 - 8}  \\  \\  \frac{1}{x}  = 3 - 2 \sqrt{2}  \\  \\ x  +  \frac{1}{x}  = (3 + 2 \sqrt{2} ) + (3 - 2 \sqrt{2} ) \\  \\ x +  \frac{1}{x}  = 3 + 2 \sqrt{2}  + 3  - 2 \sqrt{2}  \\  \\  x +  \frac{1}{x}  = 3 + 3 \\  \\ x +  \frac{1}{x}  = 6 \\  \\   {(x +  \frac{1}{x}) }^{2}  =  {(6)}^{2}  \\  \\  {(x)}^{2}  +   {( \frac{1}{x} )}^{2}  + 2 \times x \times  \frac{1}{ x }  = 36 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 36 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 36 - 2 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 34 \\  \\  {( {x}^{2}  +  \frac{1}{ {x}^{2} } )}^{2}  =  {(34)}^{2}  \\  \\  {( {x}^{2} )}^{2}  +  {( \frac{1}{ {x}^{2} } )}^{2}  + 2 \times  {x}^{2}  \times  \frac{1}{ {x}^{2} }  = 1156 \\  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 = 1156 \\  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 1156 - 2 \\  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 1154


Hope this helps!!!!

@Mahak24

Thanks...
☺☺

DaIncredible: and see once our answer
DaIncredible: they are not matching
Anonymous: now i modified it
DaIncredible: ohh sorey
DaIncredible: sorry*
DaIncredible: ohhk
Anonymous: its ok
DaIncredible: thanks for brainliest
Anonymous: congo
DaIncredible: thnx :)
Similar questions