Math, asked by keswar556, 6 months ago

If x = 3 - V7, then find the value of x + 1/x.
Select one:
O a. 1/2 (7-V10)
b. 1/2 (9-17)
O c. 1/2 (7 + V10)
O d. 1/2 (9 + 17)​

Answers

Answered by krishnaanandsynergy
0

Answer:

We can find the value of x+\frac{1}{x} using the given x value.

Final Answer: Option b: x+\frac{1}{x} =\frac{1 }{2}(9- \sqrt{7})

Step-by-step explanation:

From the given question,

The value of x=3-\sqrt{7}

                     \frac{1}{x}=\frac{1}{3-\sqrt{7} }

Step 1:

  • To find the value of \frac{1}{x} take the conjugate of the denominator value.
  • Conjugate : Changing the sign between two terms.
  • For example, the conjugate of x + y is x-y

                    \frac{1}{x}=\frac{1}{3-\sqrt{7} }

                       =\frac{1}{3-\sqrt{7} }\times \frac{3+\sqrt{7} }{3+\sqrt{7} }

                       =\frac{3+\sqrt{7} }{(3-\sqrt{7} )(3+\sqrt{7}) }

Step 2:

  • Denominator in the form of (a+b)(a-b).
  • Formula:  (a+b)(a-b)=a^2-b^2
  • Apply this formula in step 1.So that,

                  (3-\sqrt{7} )(3+\sqrt{7} )=3^2-(\sqrt{7} )^2

                                              =9-7  => (\sqrt{7} \times \sqrt{7} =7)

                 (3-\sqrt{7} )(3+\sqrt{7} )=2

Step 3:

  • Now substitute  (3-\sqrt{7} )(3+\sqrt{7} )=2 in step 1.

                  \frac{1}{x} =\frac{3+\sqrt{7} }{(3-\sqrt{7} )(3+\sqrt{7}) }

                  \frac{1}{x}= \frac{3+\sqrt{7} }{2 }

Step 4:

  • Now we can find the value of x+\frac{1}{x} .

            x+\frac{1}{x}=(3-\sqrt{7})+\frac{3+\sqrt{7} }{2}

  • Take the L.C.M for denominator values 1 and 2
  • L.C.M of 1 and 2 is 2.
  • So we should equate to 2 in the denominator.That is,

                     =\frac{2(3-\sqrt{7})+(3+\sqrt{7}) }{2}        

                     =\frac{(6-2 \sqrt{7})+(3+\sqrt{7}) }{2}

                     =\frac{6-2 \sqrt{7}+3+\sqrt{7} }{2}

Step 5:

  • We can add the terms in the numerator.

                     =\frac{9- \sqrt{7} }{2}

  • It can be written as,

           x+\frac{1}{x} =\frac{1 }{2}(9- \sqrt{7})

Final Answer:

Option b:  x+\frac{1}{x} =\frac{1 }{2}(9- \sqrt{7})

                 

Answered by jitumahi435
0

We need to recall the following definition of conjugate.

Conjugate is a change in the sign in the middle of two terms.

(+ to - ) or (- to +)

This problem is about the conjugation of a term.

Given:

x=3-\sqrt{7}

Now,

x+\frac{1}{x}

=(3-\sqrt{7} )+\frac{1}{(3-\sqrt{7} )}

=\frac{(3-\sqrt{7} )*(3-\sqrt{7} )+1}{(3-\sqrt{7} )}

=\frac{9-6\sqrt{7} +7+1}{(3-\sqrt{7} )}

=\frac{17-6\sqrt{7}}{3-\sqrt{7} }

Multiply the numerator and denominator by the conjugate of (3-\sqrt{7}).

Conjugate of (3-\sqrt{7}) is (3+\sqrt{7}).

=\frac{(17-6\sqrt{7})(3+\sqrt{7})}{(3-\sqrt{7})(3+\sqrt{7})  }

=\frac{51-18\sqrt{7}-42+17\sqrt{7}}{9-7 }

=\frac{9-\sqrt{7} }{2}

=\frac{1}{2}(9-\sqrt{7}  )

Hence, the correct option is (b) \frac{1}{2}(9-\sqrt{7}).

Similar questions