if X^3+y^3=25and x+y=5 than find out the x^4+y^4
Answers
Answered by
0
Answer:
425/9
Step-by-step explanation:
x³ + y³ = 25 and x+y = 5;
(x³+y³)(x+y) = x⁴ + xy³+yx³+y4 = x⁴ + y⁴ + xy(x²+y²)
we need to find values of xy and x²+y²
cubing x+y = 5 to get value of xy;
(x+y)³ = 125 => x³+y³+3xy(x+y) = 125 => 25 + 3xy(5) = 125
=> 15xy = 100 => xy = 100/15 = 20/3.
Squaring x+y = 5 to get value of x² + y²
(x+y)² = 25
x²+ y²+2xy = 25
x² + y² = 25 - 2xy = 25 - 2*20/3 = 25 - 40/3 = 35/3.
Now substitute the values back
=> 25 * 5 = x⁴ + y⁴ + xy(x²+y²)
=> 125 = x⁴ + y⁴ + 20/3*35/3
x⁴ + y⁴ = 125 - 700/9 = 1125 - 700/9 = 425/9
Similar questions