If x^3+ y^3 = 9 and x + y = 3, then the value of x^4+y^4 is?
Answers
Answer:
x⁴ + y⁴ = 17
Step-by-step explanation:
Given ---> x³ + y³ = 9 and x + y = 3
To find ---> Value of ( x⁴ + y⁴ )
Solution---> We know that
x³ + y³ = ( x + y ) ( x² + y² - xy )
Putting x³ + y³ = 9 and x + y = 3 we get
=> 9 = 3 ( x² + y² - xy )
=> x² + y² - xy = 9 / 3
=> x² + y² - xy = 6 .................... (1)
Adding and subtracting 2xy we get
=> ( x² + y² + 2 xy ) - 2 xy - xy = 3
We have an identity
a² + b² + 2 ab = ( a + b )² , applying it here
=> ( x + y )² - 3 xy = 3
=> ( 3 )² - 3 xy = 3
=> 9 - 3 xy = 3
=> 3 xy = 9 - 3
=> xy = 6 / 3
=> xy = 2
By relation (1)
x² + y² - xy = 3
=> x² + y² - 2 = 3
=> x² + y² = 3 + 2
=> x² + y² = 5
Squaring both sides we get
=> ( x² + y² )² = (5)²
Applying , (a + b )² = a² + b² + 2ab , here we get
=> ( x² )² + ( y² )² + 2 x² y² = 25
=> x⁴ + y⁴ + 2 x² y² = 25
=> x⁴ + y⁴ + 2 ( x y )² = 25
Putting xy = 2 we get
=> x⁴ + y⁴ + 2 ( 2 )² = 25
=> x⁴ + y⁴ + 2 ( 4 ) =25
=> x⁴ + y⁴ + 8 = 25
=> x⁴ + y⁴ = 25 - 8
=> x⁴ + y⁴ = 17