Math, asked by aalneyadi45, 3 months ago

If x^3 + y^3 = 9, find the value of d^2y/dx^2 at the point (2,1)
The value of d^2y/dx^2 at the point (2,1) is

Answers

Answered by BrainlyPopularman
144

GIVEN :

  \\ \bf \implies x^3 + y^3 = 9\\

TO FIND :

  \\ \bf \implies\dfrac{{d}^{2}y}{dx ^{2} } \:  \: at \:  \: (2,1) =?\\

SOLUTION :

  \\ \bf \implies x^3 + y^3 = 9\\

  \\ \bf \implies y^3 = 9 -  {x}^{3} \\

  \\ \bf \implies y = (9 -  {x}^{3})^ \frac{1}{3}  \\

• Differentiate with respect to 'x' –

  \\ \bf \implies  \dfrac{dy}{dx} = \dfrac{1}{3}(9 -  {x}^{3})^ {- \frac{2}{3}}  \times ( - 3 {x}^{2} ) \\

  \\ \bf \implies  \dfrac{dy}{dx} =  -  {x}^{2} (9 -  {x}^{3})^ {- \frac{2}{3}}\\

• Again Differentiate with respect to 'x' –

  \\ \bf \implies  \dfrac{d^{2} y}{dx ^{2} } =  -  \left[{x}^{2} \times  -  \dfrac{2}{3}  \times (9 -  {x}^{3})^ {- \frac{5}{3}} \times ( - 3 {x}^{2}) + (2x)(9 -  {x}^{3})^ {- \frac{2}{3}}\right]\\

  \\ \bf \implies  \dfrac{d^{2} y}{dx ^{2} } =  -  \left[{x}^{2}\times (9 -  {x}^{3})^ {- \frac{5}{3}} \times(2{x}^{2}) + (2x)(9 -  {x}^{3})^ {- \frac{2}{3}}\right]\\

  \\ \bf \implies  \dfrac{d^{2} y}{dx ^{2} } =  -  \left[2{x}^{4}\times (9 -  {x}^{3})^ {- \frac{5}{3}}+ (2x)(9 -  {x}^{3})^ {- \frac{2}{3}}\right]\\

• At (2,1) –

  \\ \bf \implies  \left[\dfrac{d^{2} y}{dx ^{2}}\right]_{(2,1)}=  -  \left[2{(2)}^{4}\times (9 -  {2}^{3})^ {- \frac{5}{3}}+ (2 \times 2)(9 -  {2}^{3})^ {- \frac{2}{3}}\right]\\

  \\ \bf \implies  \left[\dfrac{d^{2} y}{dx ^{2}}\right]_{(2,1)}=  -  \left[2{(16)}\times (9 -8)^ {- \frac{5}{3}}+ (4)(9 -8)^ {- \frac{2}{3}}\right]\\

  \\ \bf \implies  \left[\dfrac{d^{2} y}{dx ^{2}}\right]_{(2,1)}=  -  \left[32\times (1)^ {- \frac{5}{3}}+4(1)^ {- \frac{2}{3}}\right]\\

  \\ \bf \implies  \left[\dfrac{d^{2} y}{dx ^{2}}\right]_{(2,1)}=-(32+4)\\

  \\ \implies \red{ \boxed{ \bf\left(\dfrac{d^{2} y}{dx ^{2}}\right)_{(2,1)}=-36}}\\


amansharma264: Great
BrainlyPopularman: Thanks
Answered by BrainlyKilIer
156

{\bf{Given\::}} \\

The equation given as,

  • \bf{x^3\:+\:y^3\:=\:9} \\

 \\ {\bf{To\: Find\::}} \\

  • \bf{\dfrac{d^2y}{dx^2}\:at\:point\:(2\:,\:1)} \\

 \\ {\bf{Solution\::}} \\

:\implies\:\tt{x^3\:+\:y^3\:=\:9} \\

:\implies\:\tt{y^3\:=\:9\:-\:x^3} \\

:\implies\:\tt{y\:=\:\left(9\:-\:x^3\right)^{\frac{1}{3}}} \\

Now,

Differentiate the above equation w.r.t x, we get

:\implies\:\tt{\dfrac{dy}{dx}\:=\:\dfrac{d\left(9\:-\:x^3\right)^{\frac{1}{3}}}{dx}\:} \\

:\implies\:\tt{\dfrac{dy}{dx}\:=\:\dfrac{d\left(9\:-\:x^3\right)^{\frac{1}{3}}}{d\left(9\:-\:x^3\right)}\times{\dfrac{d\left(9\:-\:x^3\right)}{dx}}\:} \\

:\implies\:\tt{\dfrac{dy}{dx}\:=\:\dfrac{1}{3}\:\left(9\:-\:x^3\right)^{\frac{1}{3}\:-\:1}\times{\left(0\:-\:3\:x^{3\:-\:1}\right)}\:} \\

:\implies\:\tt{\dfrac{dy}{dx}\:=\:\dfrac{1}{3}\:\left(9\:-\:x^3\right)^{-\frac{2}{3}}\times{-3\:x^{2}}\:} \\

:\implies\:\tt{\dfrac{dy}{dx}\:=\:-\:x^2\:\left(9\:-\:x^3\right)^{-\frac{2}{3}}\:} \\

Again,

Differentiate the above equation w.r.t x, we get

:\implies\:\tt{\dfrac{d}{dx}\left(\dfrac{dy}{dx}\right)\:=\:\dfrac{d}{dx}\bigg(-\:x^2\:\left(9\:-\:x^3\right)^{-\frac{2}{3}}\bigg)\:} \\

:\implies\:\tt{\dfrac{d^2y}{dx^2}\:=\:-\:x^2\:\bigg[\dfrac{d}{dx}\left(\left(9\:-\:x^3\right)^{-\frac{2}{3}}\right)\bigg]\:+\:\bigg[\dfrac{d}{dx}\:\left(-\:x^2\right)\bigg]\:\left(9\:-\:x^3\right)^{-\frac{2}{3}}} \\

:\implies\:\tt{\dfrac{d^2y}{dx^2}\:=\:-\:x^2\times{-\dfrac{2}{3}}\left(9\:-\:x^3\right)^{-\frac{2}{3}\:-\:1}\times{\left(0\:-\:3x^{3\:-\:1}\right)}\:+\:\bigg\{-\:2x^{2\:-\:1}\left(9\:-\:x^3\right)^{-\frac{2}{3}}\bigg\}\:} \\

:\implies\:\tt{\dfrac{d^2y}{dx^2}\:=\:-\:x^2\times{-3x^2}\times{-\dfrac{2}{3}}\left(9\:-\:x^3\right)^{-\frac{5}{3}}\:+\:\bigg\{-\:2x\:\left(9\:-\:x^3\right)^{-\frac{2}{3}}\bigg\}\:} \\

:\implies\:\tt{\dfrac{d^2y}{dx^2}\:=\:-\:2x^4\times\:\left(9\:-\:x^3\right)^{-\frac{5}{3}}\:-\:2x\:\left(9\:-\:x^3\right)^{-\frac{2}{3}}\:} \\

Putting the value of 'x = 2' in the above equation, we get

:\implies\:\tt{\left(\dfrac{d^2y}{dx^2}\right)_{[at\:(2\:,\:1)]}\:=\:-\:2\times{2}^4\times\:\left(9\:-\:2^3\right)^{-\frac{5}{3}}\:-\:2\times{2}\:\left(9\:-\:2^3\right)^{-\frac{2}{3}}\:} \\

:\implies\:\tt{\left(\dfrac{d^2y}{dx^2}\right)_{[at\:(2\:,\:1)]}\:=\:-\:2\times{16}\times\:\left(9\:-\:8\right)^{-\frac{5}{3}}\:-\:4\:\left(9\:-\:8\right)^{-\frac{2}{3}}\:} \\

:\implies\:\tt{\left(\dfrac{d^2y}{dx^2}\right)_{[at\:(2\:,\:1)]}\:=\:-\:32\times\:\times{1}^{-\frac{5}{3}}\:-\:4\times{1}^{-\frac{2}{3}}\:} \\

:\implies\:\tt{\left(\dfrac{d^2y}{dx^2}\right)_{[at\:(2\:,\:1)]}\:=\:-\:32\:-\:4\:} \\

:\implies\:\bf\pink{\left(\dfrac{d^2y}{dx^2}\right)_{[at\:(2\:,\:1)]}\:=\:-\:36\:} \\

Similar questions