Math, asked by nithyakalyani05, 7 months ago

if x = 30 degree then 3 sin x - 4 sin ^3 x is​

Answers

Answered by Asterinn
17

Given :

  • x = 30°

To find :

  • 3 sin x - 4( sin³ x)

Solution :

To find the value of 3 sin x - 4( sin³ x) we will put x = 30° :-

⟹ 3 sin x - 4( sin³ x)

⟹ 3 sin 30° - 4( sin³ 30°)

we know that :- sin 30° = 1/2

⟹( 3× 1/2 )- 4( 1/2)³

⟹( 3/2 )-[ 4( 1/2) × (1/2) ×( 1/2)]

⟹( 3/2 )- ( 1/2)

⟹( 3-1) / 2

⟹ 2/ 2

⟹ 1

Answer : 1

_____________________

Learn more :-

  • Sin 30° = 1/2

  • cos 30° = √3/2

  • tan 30° = 1/√3

  • Sin 45° = 1/√2

  • cos 45° = 1/√2

  • tan 45° = 1

  • Sin 60° = √3/2

  • cos 60° = 1/2

  • tan 60° = √3

  • Sin 90° = 1

  • cos 90° = 0

  • tan 90° = infinite

  • cosec x = 1/ sin x

  • sec x = 1/ cosx

  • cot x = 1/tan x

  • sin²x + cos²x = 1

  • 1 + tan²x= sec²x

  • cosec²x - cotx = 1

___________________

Answered by prince5132
15

GIVEN :-

  • x = 30°.

TO FIND :-

  • The Value of 3 sinx - 4 sin³x.

SOLUTION :-

\begin{gathered}\bullet\:\sf Trigonometric\:Values :\\\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}&Not D{e}fined\end{tabular}}\end{gathered}

Put value of x in the equation 3 sinx - 4 sin³x.

 \\  \\   :  \implies \displaystyle \sf \: 3 \sin30 ^ {\circ}  - 4 \sin ^{3} 30 ^{ \circ}  \\  \\  \\

   \because\displaystyle \sf \:  \sin30   ^ {\circ}  =  \dfrac{1}{2}  \\  \\  \\

  :  \implies \displaystyle \sf 3 \times  \frac{1}{2}  - 4 \times  \bigg( \frac{1}{2}  \bigg) ^{ 3}  \\  \\  \\

  :  \implies \displaystyle \sf  \dfrac{3}{2}  - 4 \times  \dfrac{1}{8}  \\  \\  \\

  :  \implies \displaystyle \sf  \dfrac{3}{2}  -  \dfrac{4}{8}  \\  \\  \\

  :  \implies \displaystyle \sf  \frac{12 - 4}{8}  \\  \\  \\

  :  \implies \displaystyle \sf  \cancel \dfrac{8}{8}  \\  \\  \\

  :  \implies \displaystyle \sf  \underline{ \boxed{3 \sin30 ^ {\circ}  - 4 \sin ^{3} 30 ^{ \circ} =  1}} \\  \\

 \therefore\underline {\displaystyle \sf value  \: of  \: 3 \sin30 ^ {\circ}  - 4 \sin ^{3} 30 ^{ \circ}  \: is  \: 1}

Similar questions