Math, asked by AvnishPandey, 1 month ago

If x = √(3a+2b) + √(3a - 2b) / √(3a+2b) - √(3a-2b), prove that : bx² - 3ax + b = 0 ​

Answers

Answered by SƬᏗᏒᏇᏗƦƦᎥᎧƦ
232

\underline{\Large{ \sf{Given \: information:-}}}

  •  \sf{x \:  =  \:  \dfrac{ \sqrt{3a \:  +  \: 2b}   \: +  \: \sqrt{3a  \: - \: 2 b}  }{ \sqrt{3a  \: +  \: 2b}  \: -  \:   \sqrt{3a  \: -  \: 2b} } }

\underline{\Large{ \sf{To \: Prove:-}}}

  • bx² - 3ax + b = 0

\underline{\Large{ \sf{Let's \: Proof:-}}}

Taking denominator as 1:

\sf{ \dfrac{x}{1} \:  =  \:  \dfrac{ \sqrt{3a \:  +  \: 2b}   \: +  \: \sqrt{3a  \: - \: 2 b}  }{ \sqrt{3a  \: +  \: 2b}  \: -  \:   \sqrt{3a  \: -  \: 2b} } }

Usage of componendo and dividendo:

Which states that,

  •  \boxed{\sf{ \dfrac{a \:  + b}{a  \:  -  \: b}  =   \:  \dfrac{c \:  +  \: d}{c \:  -  \: d} }}

Using it now,

:  \implies \:  \sf{ \dfrac{x + 1}{x - 1} =  \dfrac{ \sqrt{3a + 2b} \:  +  \:  \sqrt{3a - 2b} \:   +   \: \sqrt{3a + 2b} \:  -   \: \sqrt{3a - 2b}   }{ \sqrt{3a + 2b}  \:  +  \:  \sqrt{3a - 2b} \:  -  \:  \sqrt{3a + 2b}  \:  +  \:  \sqrt{3a - 2b}  }   }

Here we gets,

: \implies \:  \sf{ \dfrac{x + 1}{x - 1}  \:  =  \:  \dfrac{2 \sqrt{3a \:  +  \: 2b} }{2 \sqrt{3a \:  -  2b} } }

Cancelling 2,

: \implies \:  \sf{ \dfrac{x + 1}{x - 1}  \:  =  \:  \dfrac{ \cancel2  \: \sqrt{3a \:  +  \: 2b} }{ \cancel2  \: \sqrt{3a \:  -  2b} } }

After cancelling 2 we gets,

: \implies \:  \sf{ \dfrac{x + 1}{x - 1}  \:  =  \:  \dfrac{ \sqrt{3a \:  +  \: 2b} }{  \sqrt{3a \:  -  2b} } }

Roots in R.H.S. would be cancelled,

: \implies \:  \sf{\dfrac{x + 1}{x - 1}  \:  =  \:  \dfrac{ {3a \:  +  \: 2b} }{{3a \:  -  2b} } }

Squaring L.H.S. side terms,

: \implies \:  \sf{(\dfrac{x + 1}{x - 1}) {}^{2}   \:  =  \:  \dfrac{ {3a \:  +  \: 2b} }{{3a \:  -  2b} } }

After squaring we gets,

: \implies \:  \sf{\dfrac{x {}^{2}  + 2x + 1}{x {}^{2}  - 2x + 1}   \:  =  \:  \dfrac{ {3a \:  +  \: 2b} }{{3a \:  -  2b} } }

Let us use the componendo and dividendo again,

Concept understanding is written above.

: \implies \:  \sf{\dfrac{x {}^{2} \:   +  \: 2x  \: +  \: 1  \: +  \: x {}^{2} - 2x  \: +  \: 1 }{x {}^{2}   \:  + \:  2x \:  +  \: 1  \: -  \: x {}^{2}  \:  +  \: 2x \:  - \:  1}   \:  =  \:  \dfrac{ {3a \:  +  \: 2b + 3a - 2b} }{{3a \:   +  \:   2b \:  - 3a \:  +  \: 2b} } }

On solving them we gets,

: \implies \:  \sf{ \dfrac{2(x {}^{2} \:  +  \: 1) }{4x}  \:  =  \:  \dfrac{6a}{4b} }

Here we have even grouped terms.

Dividing both the sides with 2, (i.e., cancelling terms)

: \implies \:  \sf{ \dfrac{ \cancel2 \: (x {}^{2} \:  +  \: 1) }{ \cancel4x}  \:  =  \:  \dfrac{6a}{4b} }

: \implies \:  \sf{ \dfrac{ \: x {}^{2} \:  +  \: 1}{ 2x}  \:  =  \:  \dfrac{6a}{4b} }

: \implies \:  \sf{ \dfrac{ \: x {}^{2} \:  +  \: 1}{ 2x}  \:  =  \:  \dfrac{ \cancel6a}{ \cancel4b} }

We gets now,

: \implies \:  \sf{ \dfrac{ \: x {}^{2} \:  +  \: 1}{ 2x}  \:  =  \:  \dfrac{ 3a}{2b} }

On cross multiplying we gets,

: \implies \:  \sf{2bx {}^{2} \:  +  \: 2b \:  =  \: 6ax }

On dividing with 2 we gets,

: \implies \:\sf{bx {}^{2} \: + \: 3ax\:   +  \: b  \:  =  \: 3ax}

On transposing sides,

: \implies \:  \boxed { \sf{bx {}^{2} \: - 3ax\:   +  \: b  \:  =  \: 0}}

Hence proved!!

Similar questions