Math, asked by milli8375, 10 months ago

If x=√3a+2b+√3a-2b / √3a+2b-√3a-2b , then show that bx^2-ax+b=0

Answers

Answered by pulakmath007
17

SOLUTION

CORRECT QUESTION

\displaystyle \sf{If \:  \:  x =  \frac{ \sqrt{3a + 2b} +  \sqrt{3a  -  2b}  }{\sqrt{3a + 2b}  -   \sqrt{3a  -  2b}}  }

then show that

 \sf{ b {x}^{2}  - 3ax + b = 0\: }

GIVEN

 \displaystyle \sf{ x =  \frac{ \sqrt{3a + 2b} +  \sqrt{3a  -  2b}  }{\sqrt{3a + 2b}  -   \sqrt{3a  -  2b}} \:  \: }

TO PROVE

 \sf{ b {x}^{2}  - 3ax + b = 0\: }

CALCULATION

It is given that

 \displaystyle \sf{ x =  \frac{ \sqrt{3a + 2b} +  \sqrt{3a  -  2b}  }{\sqrt{3a + 2b}  -   \sqrt{3a  -  2b}} \:  \: }

By Componendo - Dividendo Rule

 \displaystyle \sf{  \frac{x + 1}{x - 1}  =  \frac{ 2\sqrt{3a + 2b} }{2  \sqrt{3a  -  2b}} \:  \: }

 \implies \:  \displaystyle \sf{  \frac{x + 1}{x - 1}  =  \frac{ \sqrt{3a + 2b} }{  \sqrt{3a  -  2b}} \:  \: }

Squaring both sides

 \displaystyle \sf{  \frac{ {(x + 1)}^{2} }{ {(x - 1)}^{2} }  =  \frac{ {3a + 2b} }{{3a  -  2b}} \:  \: }

 \implies \:  \displaystyle \sf{  \frac{  {x}^{2}  + 2x + 1}{ {x}^{2}  - 2x + 1}  =  \frac{ {3a + 2b} }{{3a  -  2b}} \:  \: }

Again by Componendo Dividendo Rule

 \:  \displaystyle \sf{  \frac{ 2( {x}^{2}   + 1)}{  4x }  =  \frac{ 6a  }{4b} \:  \: }

 \implies \:  \:  \displaystyle \sf{  \frac{ ( {x}^{2}   + 1)}{  x }  =  \frac{ 3a  }{b} \:  \: }

 \implies \displaystyle \sf{b {x}^{2}  + b = 3ax}

 \implies \:  \sf{ b {x}^{2}  - 3ax + b = 0\: }

Hence the prove follows

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Write the degree of the given polynomial:

5x³+4x²+7x

https://brainly.in/question/5714606

Similar questions