Math, asked by avaniii86, 9 months ago

If x=√3a+2b + √3a-2b upon √3a+2b - √3a-2b prove that : bx²-3ax+b=0​

Answers

Answered by MaheswariS
18

\textbf{Given:}

\mathrm{x=\dfrac{\sqrt{3a+2b}+\sqrt{3a-2b}}{\sqrt{3a+2b}-\sqrt{3a-2b}}}

\textbf{To prove:}

\mathrm{bx^2-3ax+b=0}

\textbf{Solution:}

\text{Consider,}

\mathrm{x=\dfrac{\sqrt{3a+2b}+\sqrt{3a-2b}}{\sqrt{3a+2b}-\sqrt{3a-2b}}}

\text{To rationalize the denominator}

\mathrm{x=\dfrac{\sqrt{3a+2b}+\sqrt{3a-2b}}{\sqrt{3a+2b}-\sqrt{3a-2b}}{\times}\dfrac{\sqrt{3a+2b}+\sqrt{3a-2b}}{\sqrt{3a+2b}+\sqrt{3a-2b}}}

\mathrm{x=\dfrac{(\sqrt{3a+2b}+\sqrt{3a-2b})^2}{(3a+2b)-(3a-2b)}}

\mathrm{x=\dfrac{(\sqrt{3a+2b}+\sqrt{3a-2b})^2}{4b}}

\mathrm{4b\,x=(\sqrt{3a+2b}+\sqrt{3a-2b})^2}

\mathrm{4b\,x=(3a+2b)+(3a-2b)+2\,\sqrt{(3a+2b)(3a-2b)}}

\mathrm{4b\,x=6a+2\,\sqrt{9a^2-4b^2}}

\mathrm{4b\,x-6a=2\,\sqrt{9a^2-4b^2}}

\mathrm{2b\,x-3a=\sqrt{9a^2-4b^2}}

\text{Squaring on bothsides, we get}

\mathrm{(2b\,x-3a)^2=9a^2-4b^2}

\mathrm{4b^2x^2+9a^2-12ab\,x=9a^2-4b^2}

\mathrm{4b^2x^2-12ab\,x+4b^2=0}

\text{Divide bothsides by 4b}

\implies\boxed{\mathrm{\bf\,bx^2-3a\,x+b=0}}

Answered by pulakmath007
42

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

 \displaystyle \sf{ x =  \frac{ \sqrt{3a + 2b} +  \sqrt{3a  -  2b}  }{\sqrt{3a + 2b}  -   \sqrt{3a  -  2b}} \:  \: }

TO PROVE

 \sf{ b {x}^{2}  - 3ax + b = 0\: }

CALCULATION

It is given that

 \displaystyle \sf{ x =  \frac{ \sqrt{3a + 2b} +  \sqrt{3a  -  2b}  }{\sqrt{3a + 2b}  -   \sqrt{3a  -  2b}} \:  \: }

By Componendo - Dividendo Rule

 \displaystyle \sf{  \frac{x + 1}{x - 1}  =  \frac{ 2\sqrt{3a + 2b} }{2  \sqrt{3a  -  2b}} \:  \: }

 \implies \:  \displaystyle \sf{  \frac{x + 1}{x - 1}  =  \frac{ \sqrt{3a + 2b} }{  \sqrt{3a  -  2b}} \:  \: }

Squaring both sides

 \displaystyle \sf{  \frac{ {(x + 1)}^{2} }{ {(x - 1)}^{2} }  =  \frac{ {3a + 2b} }{{3a  -  2b}} \:  \: }

 \implies \:  \displaystyle \sf{  \frac{  {x}^{2}  + 2x + 1}{ {x}^{2}  - 2x + 1}  =  \frac{ {3a + 2b} }{{3a  -  2b}} \:  \: }

Again by Componendo Dividendo Rule

 \:  \displaystyle \sf{  \frac{ 2( {x}^{2}   + 1)}{  4x }  =  \frac{ 6a  }{4b} \:  \: }

 \implies \:  \:  \displaystyle \sf{  \frac{ ( {x}^{2}   + 1)}{  x }  =  \frac{ 3a  }{b} \:  \: }

 \implies \displaystyle \sf{b {x}^{2}  + b = 3ax}

 \implies \:  \sf{ b {x}^{2}  - 3ax + b = 0\: }

Hence the prove follows

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

how many terms are there in an expression

12ab -24b +36a

https://brainly.in/question/22764723

Similar questions