If x =3cosθ-cos3θ, y = 3sinθ-sin3θthen dy/dx =
Answers
GIVEN :–
▪︎ x = 3cosθ - cos3θ & y = 3sinθ - sin3θ
TO FIND :–
• dy/dx = ?
SOLUTION :–
• Differential of 'x' with respect to 'θ' –
=> dx/dθ = 3( -sinθ) - [ - sin(3θ)] (3)
=> dx/dθ = - 3 sinθ + 3 sin(3θ) ____eq.(1)
• Differential of 'y' with respect to 'θ' –
=> dy/dθ = 3(cosθ) - [cos(3θ)] (3)
=> dy/dθ = 3(cosθ) - 3 cos(3θ) ____eq.(2)
[ ∵ dy/dx = (dy/dθ)/(dx/dθ) ]
• Using eq.(1) & eq.(2) –
=> dy/dx = [ 3(cosθ) - 3 cos(3θ) ] / [ - 3 sinθ + 3 sin(3θ) ]
=> dy/dx = 3 [ cos(θ) - cos(3θ)] / 3 [ sin(3θ) - sin(θ) ]
=> dy/dx = [cos(θ) - cos(3θ)] / [ sin(3θ) - sin(θ) ]
USED IDENTITY :–
(1) d(sinθ)/dθ = cosθ
(2) d(cosθ)/dθ = - sinθ
(3) d(kθ)/dθ = k [ k → constant ]
x = 3cosθ - cos3θ & y = 3sinθ - sin3θ
TO FIND :–
• dy/dx = ?
SOLUTION :–
• Differential of 'x' with respect to 'θ' –
=> dx/dθ = 3( -sinθ) - [ - sin(3θ)] (3)
=> dx/dθ = - 3 sinθ + 3 sin(3θ) ____eq.(1)
• Differential of 'y' with respect to 'θ' –
=> dy/dθ = 3(cosθ) - [cos(3θ)] (3)
=> dy/dθ = 3(cosθ) - 3 cos(3θ) ____eq.(2)
[ ∵ dy/dx = (dy/dθ)/(dx/dθ) ]
• Using eq.(1) & eq.(2) –
=> dy/dx = [ 3(cosθ) - 3 cos(3θ) ] / [ - 3 sinθ + 3 sin(3θ) ]
=> dy/dx = 3 [ cos(θ) - cos(3θ)] / 3 [ sin(3θ) - sin(θ) ]
=> dy/dx = [cos(θ) - cos(3θ)] / [ sin(3θ) - sin(θ) ]