Math, asked by StrongGirl, 8 months ago

If x^3dy+xydx=2ydx+x^2dy and y(2) = e then y(4) =? ​

Answers

Answered by Anonymous
8

 \bf \huge \underline \red{Answer :  - }

\sf \:  {x}^{3} dy + xydx =  {x}^{2} dy + 2ydx \\  \\  \sf \:  {x}^{2} (x - 1)dy = y(2 - x)dx \\  \\\sf \: \int \:  \frac{dy}{y}   =  \int \:  \frac{(2 - x)}{ {x}^{2}(x - 1) } dx \\  \\ \sf \:ln \: y =  \int \:  \left( \dfrac{a}{x}  +  \frac{b}{ {x}^{2} }  +  \frac{c}{x - 1}  \right) \\  \\  \sf \:a =  - 1 \:  \:  \:  \: and \:  \: b =  - 2 \:  \: and \:  \: c = 1 \\  \\ \sf \:ln \: y =  - 1ln \: x +  \frac{2}{x}  + ln(x - 1) + c \\  \\ \sf \:ln \: y = ln \: ( \frac{x - 1}{x} ) + ( \frac{2}{x} ) + c \\  \\ \sf \:y(2) = e \\  \\ \sf \:x = 2 \:  \: and \:  \:  \: y = e \\  \\ \sf \: \cancel {1} =  - ln \: 2  \:  \: \cancel{ + 1} + c \\  \\ \sf \:c = ln \: 2 \\  \\ \sf \: ln \: y = ln \: ( \frac{x - 1}{x} ) +  \frac{2}{n} ln \: 2 \\  \\ \sf \:ln \: y = ln \: ( \frac{3}{4} ) + 2 + ln \: 2 \\  \\ \sf \implies \:ln \: ( \frac{11}{4}  ) + 2 \\  \\ \sf  \: ln \: y = ln \: ( \frac{ \frac{11}{4} }{ {e}^{2} } ) \\  \\\sf \implies \: y =  \frac{11}{ {4e}^{2} }

Answered by BrainlyPopularman
24

GIVEN :

• Differentiate equation –

 \\\bf \implies {x}^{3} dy + xydx = 2ydx +  {x}^{2} dy\\

 \\\bf \implies y(2) = e\\

TO FIND :

 \\\bf \implies  y(4) =? \\

SOLUTION :

 \\\bf \implies {x}^{3} dy + xydx = 2ydx +  {x}^{2} dy\\

 \\\bf \implies {x}^{3} dy  -  {x}^{2}dy  = 2ydx - xydx\\

 \\\bf \implies ({x}^{3} -  {x}^{2})dy  = y(2 - x)dx\\

 \\\bf \implies  \dfrac{dy}{y} = \dfrac{(2 - x)}{( {x}^{3}  -  {x}^{2}) }dx\\

• Now Integrate on both sides –

 \\\bf \implies  \int \dfrac{dy}{y} = \int \dfrac{(2 - x)}{( {x}^{3}  -  {x}^{2}) }.dx\\

 \\\bf \implies  \int \dfrac{dy}{y} = \int \dfrac{(2 - x)}{ {x}^{2} (x-1)}.dx\\

• By using Partial fraction method , We should write this as –

 \\\bf \implies \dfrac{(2 - x)}{ {x}^{2} (x-1)} =  \dfrac{A}{x} +\dfrac{B}{ {x}^{2} } +  \dfrac{C}{(x - 1)}   \\

 \\\bf \implies \dfrac{(2 - x)}{ {x}^{2} (x-1)} =  \dfrac{Ax}{ {x}^{2} } +\dfrac{B}{ {x}^{2} } +  \dfrac{C}{(x - 1)}   \\

 \\\bf \implies \dfrac{(2 - x)}{ {x}^{2} (x-1)} =  \dfrac{Ax +B }{ {x}^{2} } +  \dfrac{C}{(x - 1)}   \\

 \\\bf \implies \dfrac{(2 - x)}{ {x}^{2} (x-1)} =  \dfrac{(Ax +B)(x - 1) +C( {x}^{2}) }{ {x}^{2}(x - 1)}\\

 \\\bf \implies (2 - x)=(Ax +B)(x - 1) +C( {x}^{2})\\

 \\\bf \implies (2 - x)=A {x}^{2} - Ax + Bx -B+C( {x}^{2})\\

 \\\bf \implies (2 - x)=(A + C) {x}^{2} +(B- A)x -B\\

• After comparing –

 \\\bf \implies A =  - 1, B =  - 2\: and \: C = 1\\

• So that –

 \\\bf \implies \dfrac{(2 - x)}{ {x}^{2} (x-1)} =  \dfrac{ - 1}{x} +\dfrac{ - 2}{ {x}^{2} } +  \dfrac{1}{(x - 1)}   \\

• And integration –

 \\\bf \implies  \int \dfrac{dy}{y} = \int  \dfrac{ - 1}{x}.dx+ \int\dfrac{ - 2}{ {x}^{2} } .dx+ \int \dfrac{1}{(x - 1)}.dx\\

 \\\bf \implies ln(y)  = - ln(x)+ \dfrac{2}{ {x}} +ln(x - 1) + c\\

When x = 2 & y = e :–

 \\\bf \implies ln(e)  = - ln(2)+ \dfrac{2}{2} +ln(2- 1) + c\\

 \\\bf \implies 1  = - ln(2)+1+ln(1) + c\\

 \\\bf \implies \large { \boxed{ \bf c= ln(2)}}\\

• Now when x = 4

 \\\bf \implies ln(y)  = - ln(4)+ \dfrac{2}{4} +ln(4- 1) + ln(2)\\

 \\\bf \implies ln(y)  = - ln(2^2)+ \dfrac{1}{2} +ln(3) + ln(2)\\

 \\\bf \implies ln(y)  = -2 ln(2)+ \dfrac{1}{2} +ln(3) + ln(2)\\

 \\\bf \implies ln(y)  =  \dfrac{1}{2} +ln(3) - ln(2)\\

 \\\bf \implies ln(y)  = ln(\sqrt{e}) +ln \left(\dfrac{3}{2}\right)\\

 \\\bf \implies ln(y)  = ln\left[(\sqrt{e}) \left(\dfrac{3}{2}\right)\right]\\

 \\\large\implies{\boxed{\bf y= \dfrac{3\sqrt{e}}{2}}}\\

Similar questions