Math, asked by raihanx235, 1 month ago

If X=3sin theta + 4cos theta and y equals to 3cos theta -4 sin theta then prove that x2+y2=

Answers

Answered by Anonymous
0

Answer:

refer to the attachment

x {}^{2}  + y {}^{2}  = 25

hope it's helpful mark as brainlest

Attachments:
Answered by pulakmath007
1

SOLUTION

GIVEN

x = 3 sin θ + 4 cos θ and y = 3 cos θ - 4 sin θ

TO DETERMINE

 \sf  {x}^{2}  +  {y}^{2}

EVALUATION

Here it is given that

x = 3 sin θ + 4 cos θ

y = 3 cos θ - 4 sin θ

Now we have

 \sf  {x}^{2}  +  {y}^{2}

 \sf  =  {(3 \sin  \theta + 4 \cos \theta)}^{2}  +  {(3 \cos \theta - 4 \sin \theta)}^{2}

 \sf  =  {(3 \sin  \theta)}^{2}   +2 \times 3 \sin  \theta  \times  4 \cos \theta + {(4 \cos \theta)}^{2}  +  {(3 \cos \theta ) }^{2} -2 \times 3 \cos \theta  \times 4 \sin \theta  + {(4 \sin \theta)}^{2}

 \sf  =  9{ \sin}^{2}   \theta   +24  \sin  \theta  \cos \theta +16 { \cos }^{2}  \theta +  9{\cos}^{2}  \theta  -24\sin \theta  \cos \theta +16 { \sin}^{2}  \theta

 \sf  =  9{ \sin}^{2}   \theta   +16 { \cos }^{2}  \theta +  9{\cos}^{2}  \theta  +16 { \sin}^{2}  \theta

 \sf  =  (9 + 16){ \sin}^{2}   \theta   +(16  + 9){ \cos }^{2}  \theta

 \sf  = 25{ \sin}^{2}   \theta   +25{ \cos }^{2}  \theta

 \sf  = 25({ \sin}^{2}   \theta   +{ \cos }^{2}  \theta )

 \sf  = 25 \times 1

 \sf  = 25

FINAL ANSWER

 \sf   {x}^{2} +  {y}^{2}  = 25

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if x cos a=8 and 15cosec a=8sec a then the value of x is

a) 20 b)16 c)17 d)13

https://brainly.in/question/46325503

2. 7 cos 30° + 5 tan 30° + 6 cot 60° is

https://brainly.in/question/46167849

3. 1+ sin2α = 3 sinα cosα, then values of cot α are

https://brainly.in/question/46265791

Similar questions